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Preface

In his 1994 ICM talk Kontsevich has put forward the Homological Mirror Sym-
metry (HMS) conjectures as a proposal to study the newly discovered duality
of certain quantum field theories, coined mirror symmetry, in a mathemati-
cally rigorous form. HMS has since developed into a flourishing subject of its
own. Eventually time was considered ripe for a workshop devoted solely to
this topic, which was held at the Erwin-Schrödinger Institute, Vienna, Austria
in June 2006.

It is at this occasion that we also felt the need for a set of representative,
well-edited tutorial reviews that would both introduce and document the state
of the art, and we set ourselves to the task, as a kind of ambitious follow-up
project.

For introductions to the subject of mirror symmetry, we would like to
refer to the two essay collections – S.T. Yau, Essays on mirror manifolds,
International Press, Hong Kong 1991, and K. Hori et al. Mirror symmetry,
AMS, Providence 2003. Unfortunately, there does not exist a general textbook
introduction on homological mirror symmetry. For technically getting into the
subject by starting from the simplest, yet highly involved, example, the case
of complex tori, we refer to the excellent lecture course A. Polishchuk, Abelian
varieties, theta functions, and the Fourier transform, Cambridge University
Press, Cambridge 2002.

Two of the contributions might very well point the way to two possible
future main roads of the subject: A. Kapustin gave one of the very first re-
views of his ground-breaking joint work with E. Witten on S-duality and the
Geometric Langlands program (the original paper with Witten appeared less
than two months before the workshop). This work has already now started a
considerable amount of follow-up activity on both the mathematics and the
physics side, but the general impression is that we are still only perceiving the
tip of an iceberg. The potential for supersymmetric gauge theory, as well as
for the Langlands program in all its different versions in pure mathematics, is
clearly enormous.
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In a joint contribution M. Kontsevich and Y. Soibelman start to develop
in detail a grand perspective on A∞-algebras and A∞-categories, consider-
ing them as a version of noncommutative algebraic geometry. This provides
the basics for an extension of HMS to noncommutative spaces (a necessary
extension from the perspective of physics, e.g., concerning resolution of sin-
gularities). The consideration of modules over A∞-algebras ties HMS to one
of the central themes in the important emerging field of (higher and) derived
algebraic geometry. The presently rapidly developing study of Calabi-Yau
categories is one of the central themes behind this contribution. Finally, the
(noncommutative) geometric perspective on A∞-algebras and A∞-categories
brings HMS into close contact with more general investigations involving de-
formation theory of quantum field theories, e.g., the recent mathematical ap-
proaches to the structure of the BV-quantization scheme. This contribution
surely has the potential to become another future classic in the field of HMS.

The rigorous mathematical construction of the Fukaya category and its
detailed study in examples is one of the central themes in HMS. K. Fukaya,
P. Seidel, and I. Smith in their contribution give an overview of several ap-
proaches to the study of the Fukaya category of cotangent bundles and present
a new approach in terms of family Floer cohomology.

Another important topic in HMS is the study of equivalences of derived
categories of D-branes. For linear sigma-models corresponding to toric Calabi-
Yau varieties, M. Herbst, K. Hori, and D. Page show how to construct a whole
family of such equivalences on the Kähler moduli space.

That HMS has developed into an important field of its own is last but
not least underlined by the fact that one can meanwhile truly speak of ap-
plications of HMS. An example of an important application is provided by
the contribution of L. Katzarkov, showing the great use of the ideas of HMS
for the study of rationality questions and the Hodge conjecture in algebraic
geometry.

On the other hand, there are the deep roots of HMS in physics: HMS is
inevitably tied to the question of the calculation of topological string partition
functions and Gromov–Witten invariants. This is the topic of the contribution
of M. Huang, A. Klemm, and S. Quackenbush, culminating in the specification
of the partition function up to genus 51 for the quintic.

Another important point where HMS relates mathematics and physics is
the fact that the identification of the derived categories appearing in HMS with
the D-brane categories from physics relies upon the use of the renormalization
group flow. This is reviewed in the contribution of E. Sharpe where it is also
discussed how a similar application of the renormalization group flow appears
if stacks are used as targets of sigma-models.

Finally, from the very beginning HMS has been closely related to the
topic of deformation quantization. The contribution of Y. Soibelman is de-
voted to the study of noncommutative analytic spaces over non-archimedian
fields. As is known from previous – already classical – work of Kontsevich and
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Soibelman, noncommutative spaces over non-archimedian fields appear in ex-
amples of deformations which are not formal in the deformation parameter.

In conclusion, we would like to sincerely thank a number of people: Many
thanks go to the Erwin-Schrödinger-Institute Vienna and its directors and
president K. Schmidt, J. Schwermer, and J. Yngvason for hospitality and
financial support. We thank I. Alozie, I. Miedl, and M. Windhager from the
ESI administrative office for their very efficient support and handling of all the
practical needs. Special thanks go to W. Beiglböck for his constant support of
our book project at Springer and for providing his perfect organizational skills.
We also acknowledge the efficient support by C. Caron, G. Hakuba and the
staff of Springer in the final publishing process. Last but not least we thank
all the authors for spending many hours on preparing detailed overviews of
the field which should hopefully be of long-term value.

Pasadena and Vienna Anton Kapustin, Maximilian Kreuzer
October 2007 and Karl-Georg Schlesinger
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The Symplectic Geometry of Cotangent
Bundles from a Categorical Viewpoint

K. Fukaya1, P. Seidel2, and I. Smith3
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Abstract. We describe various approaches to understanding Fukaya categories of
cotangent bundles. All of the approaches rely on introducing a suitable class of non-
compact Lagrangian submanifolds. We review the work of Nadler-Zaslow [30, 29] and
the authors [14], before discussing a new approach using family Floer cohomology
[10] and the “wrapped Fukaya category”. The latter, inspired by Viterbo’s symplec-
tic homology, emphasizes the connection to loop spaces, hence seems particularly
suitable when trying to extend the existing theory beyond the simply connected case.

1 Overview

A classical problem in symplectic topology is to describe exact Lagrangian
submanifolds inside a cotangent bundle. The main conjecture, usually at-
tributed to Arnol’d [4], asserts that any (compact) submanifold of this kind
should be Hamiltonian isotopic to the zero-section. In this sharp form, the
result is known only for S2 and RP

2, and the proof uses methods which are
specifically four-dimensional (both cases are due to Hind [16]; concerning the
state of the art for surfaces of genus > 0, see [17]). In higher dimensions,
work has concentrated on trying to establish topological restrictions on ex-
act Lagrangian submanifolds. There are many results dealing with assorted
partial aspects of this question (see [7, 26, 35, 37, 38] and others; [26] serves
as a good introduction to the subject), using a variety of techniques. Quite
recently, more categorical methods have been added to the toolkit, and these
have led to a result covering a fairly general situation. The basic statement,
which we will later generalize somewhat, is as follows:

Theorem 1.1 (Nadler, Fukaya–Seidel–Smith) Let Z be a closed, sim-
ply connected manifold which is spin, and M = T ∗Z its cotangent bundle.
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Viewpoint. Lect. Notes Phys. 757, 1–26 (2009)
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2 K. Fukaya et al.

Suppose that L ⊂ M is an exact closed Lagrangian submanifold, which is also
spin, and additionally has vanishing Maslov class. Then (i) the projection
L ↪→ M → Z has degree ±1; (ii) pullback by the projection is an isomor-
phism H∗(Z; K) ∼= H∗(L; K) for any coefficient field K and (iii) given any
two Lagrangian submanifolds L0, L1 ⊂ M with these properties, which meet
transversally, one has |L0 ∩ L1| ≥ dimH∗(Z; K).

Remarkably, three ways of arriving at this goal have emerged, which are
essentially independent of each other, but share a basic philosophical outlook.
One proof is due to Nadler [29], building on earlier work of Nadler and Zaslow
[30] (the result in [29] is formulated for K = C, but it seems that the proof
goes through for any K). Another one is given in [14], and involves, among
other things, tools from [36] (for technical reasons, this actually works only
for char(K) �= 2). The third one, which is a collaborative work of the three
authors of this chapter, is not complete at the time of writing, mostly because
it relies on ongoing developments in general Floer homology theory. In spite
of this, we included a description of it, to round off the overall picture.

The best starting point may actually be the end of the proof, which can be
taken to be roughly the same in all three cases. Let L be as in Theorem 1.1.
The Floer cohomology groups HF ∗(T ∗

x , L), where T ∗
x ⊂ M is the cotangent

fibre at some point x ∈ Z, form a flat bundle of Z-graded vector spaces
over Z, which we denote by EL. There is a spectral sequence converging to
HF ∗(L,L) ∼= H∗(L; K), whose E2 page is

Ers
2 = Hr(Z;Ends(EL)), (1)

End∗(EL) = Hom∗(EL, EL) being the graded endomorphism vector bundle.
Because of the assumption of simple connectivity of Z, EL is actually trivial,
so the E2 page is a “box” H∗(Z)⊗End(HF ∗(T ∗

x , L)). The E2 level differential
goes from (r, s) to (r + 2, s− 1)

and similarly for the higher pages. Hence, the bottom left and top right corners
of the box necessarily survive to E∞. Just by looking at their degrees, it follows
that HF ∗(T ∗

x , L) ∼= K must be one-dimensional (and, we may assume after
changing the grading of L, concentrated in degree 0). Given that, the spectral
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sequence degenerates, yielding H∗(L; K) ∼= H∗(Z; K). On the other hand, we
have also shown that the projection L → Z has degree ±1 = ±χ(HF ∗(T ∗

x , L)).
This means that the induced map on cohomology is injective, hence necessarily
an isomorphism. Finally, there is a similar spectral sequence for a pair of
Lagrangian submanifolds (L0, L1), which can be used to derive the last part
of Theorem 1.1.

At this point, we already need to insert a cautionary note. Namely, the
approach in [14] leads to a spectral sequence which only approximates the one
in (1) (the E1 term is an analogue of the expression above, replacing the
cohomology of Z by its Morse cochain complex, and the differential is only
partially known). In spite of this handicap, a slightly modified version of the
previous argument can be carried out successfully. The other two strategies
(namely [29] and the unpublished approach) do not suffer from this deficiency,
since they directly produce (1) in the form stated above.

From the description we have just given, one can already infer one basic
philosophical point, namely the interpretation of Lagrangian submanifolds in
M as (some kind of) sheaves on the base Z. This can be viewed as a limit of
standard ideas about Lagrangian torus fibrations in mirror symmetry [11, 25],
where the volume of the tori becomes infinite (there is no algebro-geometric
mirror of M in the usual sense, so we borrow only half of the mirror symmetry
argument). The main problem is to prove that the sheaf-theoretic objects accu-
rately reflect the Floer cohomology groups of Lagrangian submanifolds, hence
in particular reproduce HF ∗(L,L) ∼= H∗(L; K). Informally speaking, this is
ensured by providing a suitable “resolution of the diagonal” in the Fukaya cat-
egory of M , which reduces the question to one about cotangent fibres L = T ∗

x .
In saying that, we have implicitly already introduced an enlargement of the
ordinary Fukaya category, namely one which allows noncompact Lagrangian
submanifolds. There are several possible ways of treating such submanifolds,
leading to categories with substantially different properties. This is where the
three approaches diverge.

1. Characteristic cycles. Reference [30] considers a class of Lagrangian
submanifolds which, at infinity, are invariant under rescaling of the cotan-
gent fibres (or more generally, asymptotically invariant). Intersections at
infinity are dealt with by small perturbations (in a distinguished direction
given by the normalized geodesic flow; this requires the choice of a real
analytic structure on Z). An important source of inspiration is Kashi-
wara’s construction [22] of characteristic cycles for constructible sheaves
on Z; and indeed, Nadler proves that, once derived, the resulting version
of the Fukaya category is equivalent to the constructible-derived category.
(A similar point of view was taken in the earlier studies of Kasturirangan
and Oh [23, 24, 31].) Generally speaking, to get a finite resolution of the
diagonal, this category has to be modified further, by restricting the be-
haviour at infinity; however, if one is only interested in applications to
closed Lagrangian submanifolds, this step can be greatly simplified.
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2. Lefschetz thimbles. The idea in [14] is to embed the Fukaya category of
M into the Fukaya category of a Lefschetz fibration π : X → C. The latter
class of categories is known to admit full exceptional collections, given by
any basis of Lefschetz thimbles. Results from homological algebra (more
precisely, the theory of mutations, see for instance [15]) then ensure the
existence of a resolution of the diagonal, in terms of Koszul dual bases.
To apply this machinery one has to construct a Lefschetz fibration, with
an antiholomorphic involution, whose real part πR is a Morse function on
XR = Z. This can be done easily, although not in a canonical way, by using
techniques from real algebraic geometry. Roughly speaking, the resulting
Fukaya category looks similar to the category of sheaves constructible
with respect to the stratification given by the unstable manifolds of πR,
compare [21]. However, because the construction of X is not precisely
controlled, one does not expect these two categories to agree. Whilst this
is not a problem for the proof of Theorem 1.1, it may be aesthetically
unsatisfactory. One possibility for improving the situation would be to
find a way of directly producing a Lefschetz fibration on the cotangent
bundle; steps in that direction are taken in [20].

3. Wrapping at infinity. The third approach remains within M , and again
uses Lagrangian submanifolds which are scaling-invariant at infinity. How-
ever, intersections at infinity are dealt with by flowing along the (not nor-
malized) geodesic flow, which is a large perturbation. For instance, after
this perturbation, the intersections of any two fibres will be given by all
geodesics in Z connecting the relevant two points. In contrast to the pre-
vious constructions, this one is intrinsic to the differentiable manifold Z,
and does not require a real-analytic or real-algebraic structure (there are
of course technical choices to be made, such as the Riemannian metric
and other perturbations belonging to standard pseudo-holomorphic curve
theory; but the outcome is independent of those up to quasi-isomorphism).
Conjecturally, the resulting “wrapped Fukaya category” is equivalent to
a full subcategory of the category of modules over C−∗(ΩZ), the dg (dif-
ferential graded) algebra of chains on the based loop space (actually, the
Moore loop space, with the Pontryagin product). Note that the classical
bar construction establishes a relation between this and the dg algebra of
cochains on Z; for K = R, one can take this to be the algebra of differential
forms; for K = Q, it could be Sullivan’s model; and for general K one can
use singular or Cech cohomology. If Z is simply connected, this relation
leads to an equivalence of suitably defined module categories, and one
can recover (1) in this way. In fact, we propose a more geometric version
of this argument, which involves an explicit functor from the wrapped
Fukaya category to the category of modules over a dg algebra of Cech
cochains.

Remark 1.2 It is interesting to compare (1) with the result of a naive geomet-
ric argument. Suppose L is closed and exact; under fibrewise scaling L 
→ cL,
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as c → ∞, cL converges (in compact subsets) to a disjoint union of cotangent
fibres

⋃
x∈L∩i(Z) T ∗

x , where i : Z ↪→ M denotes the zero-section. In particular,
for large c there is a canonical bijection between points of L ∩ cL and points
of {L ∩ T ∗

x |x ∈ L ∩ i(Z)}. Starting from this identification, and filtering by
energy, one expects to obtain a spectral sequence

⊕

x∈L∩i(Z)

HF (L, T ∗
x ) ⇒ H∗(L) (2)

using exactness to identify HF (L, cL) ∼= H∗(L). This would (re)prove that
L ∩ i(Z) �= ∅ and that HF (L, T ∗

x ) �= 0; and, in an informal fashion, this
provides motivation for believing that L is “generated by the fibres”. It seems
hard, however, to control the homology class of L starting from this, because
it seems hard to gain sufficient control over L ∩ i(Z).

Each of the following three sections of the chapter are devoted to explaining
one of these approaches. Then, in the concluding section, we take a look at
the non-simply-connected case. First of all, there is a useful trick involving
the spectral sequence (1) and finite covers of the base Z. In principle, this
trick can be applied to any of the three approaches outlined above, but at
the present state of the literature, the necessary prerequisites have been fully
established only for the theory from [30]. Applying that, one arrives at the
following consequence, which appears to be new:

Corollary 1.3 The assumption of simple-connectivity of Z can be removed
from Theorem 1.1. This means that for all closed spin manifolds Z, and all
exact Lagrangian submanifolds L ⊂ T ∗Z which are spin and have zero Maslov
class, the conclusions (i–iii) hold.

From a more fundamental perspective, the approach via wrapped Fukaya
categories seems particularly suitable for investigating cotangent bundles of
non-simply-connected manifolds, since it retains information that is lost when
passing from chains on ΩZ to cochains on Z. We end by describing what this
would mean (modulo one of our conjectures, 4.6) in the special case when
Z is a K(Γ, 1). In the special case of the torus Z = Tn, Conjecture 4.6
can be sidestepped by direct geometric arguments, at least when char(K) �=
2. Imposing that condition, one finds that an arbitrary exact, oriented and
spin Lagrangian submanifold L ⊂ T ∗Tn = (C∗)n satisfies the conclusions of
Theorem 1.1, with no assumption on the Maslov class.

Finally, it is worth pointing out that for any oriented and spin Lagrangian
submanifold L ⊂ T ∗Z, and any closed spin manifold Z, the theory produces
a Z/2Z-graded spectral sequence

H(Z; End(EL)) ⇒ H(L) (3)

which has applications in its own right, for instance to the classification of
“local Lagrangian knots” in Euclidean space. Eliashberg and Polterovich [8]
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proved that any exact Lagrangian L ⊂ C
2 which co-incides with the standard

R
2 outside a compact subset is in fact Lagrangian isotopic to R

2. Again, their
proof relies on an exclusively four-dimensional machinery.

Corollary 1.4 Let L ⊂ C
n be an exact Lagrangian submanifold which co-

incides with R
n outside a compact set. Suppose that L is oriented and spin.

Then (i) L is acyclic and (ii) π1(L) has no non-trivial finite-dimensional com-
plex representations.

Using the result of Viterbo [38] and standard facts from 3-manifold topol-
ogy, when n = 3 this implies that an oriented exact L ⊂ C

3 which co-incides
with R

3 outside a compact set is actually diffeomorphic to R
3. To prove Corol-

lary 1.4, one embeds the given L (viewed in a Darboux ball) into the zero-
section of T ∗Sn, obtaining an exact Lagrangian submanifold L′ of the latter
which co-incides with the zero-section on an open set. This last fact immedi-
ately implies that EL′ has rank one, so we see End(EL′) is the trivial K-line
bundle, and the sequence (3) implies rkKH

∗(Sn) ≥ rkKH
∗(L′). On the other

hand, projection L′ → Sn is (obviously) degree ±1, which gives the reverse in-
equality. Going back to L ⊂ L′, we deduce that L is acyclic with K-coefficients.
Since K is arbitrary, one deduces the first part of the Corollary. At this point,
one knows a posteriori that the Maslov class of L vanishes; hence so does
that of L′, and the final statement of the Corollary then follows from an older
result of Seidel [35]. When n = 3, it follows that L′ is simply connected or a
K(π, 1), at which point one can appeal to Viterbo’s work. (It is straightfor-
ward to deduce the acyclicity over fields of characteristic other than two in
the other frameworks, for instance that of [14], but then the conclusion on the
Maslov class does not follow.)

2 Constructible Sheaves

This section should be considered as an introduction to the two papers [29, 30].
Our aim is to present ideas from those papers in a way which is familiar to
symplectic geometers. With that in mind, we have taken some liberties in the
presentation, in particular omitting the (non-trivial) technical work involved
in smoothing out characteristic cycles.

2.1 Fukaya Categories of Weinstein Manifolds

Let M be a Weinstein manifold which is of finite type and complete. Recall
that a symplectic manifold (M,ω) is Weinstein if it comes with a distinguished
Liouville (symplectically expanding) vector field Y , and a proper bounded
below function h : M → R, such that dh(Y ) is positive on a sequence of
level sets h−1(ck), with limk ck = ∞. The stronger finite type assumption
is that dh(Y ) > 0 outside a compact subset of M . Finally, completeness



The Symplectic Geometry of Cotangent Bundles 7

means that the flow of Y is defined for all times (for negative times, this is
automatically true, but for positive times it is an additional constraint). Note
that the Liouville vector field defines a one-form θ = iY ω with dθ = ω. At
infinity, (M, θ) has the form ([0;∞)×N, erα), where N is a contact manifold
with contact one-form α, and r is the radial coordinate. In other words, the
end of M is modelled on the positive half of the symplectization of (N,α).
The obvious examples are cotangent bundles of closed manifolds, M = T ∗Z,
where Y is the radial rescaling vector field, and N the unit cotangent bundle.

We will consider exact Lagrangian submanifolds L ⊂ M which are Legen-
drian at infinity. By definition, this means that θ|L is the derivative of some
compactly supported function on L. Outside a compact subset, any such L will
be of the form [0;∞) × K, where K ⊂ N is a Legendrian submanifold. Now
let (L0, L1) be two such submanifolds, whose structure at infinity is modelled
on (K0,K1). To define their Floer cohomology, one needs a way of resolving
the intersections at infinity by a suitable small perturbation. The details may
vary, depending on what kind of Legendrian submanifolds one wants to con-
sider. Here, we make the assumption that (N,α) is real-analytic, and allow
only those K which are real-analytic submanifolds. Then,

Lemma 2.1 Let (φt
R) be the Reeb flow on N . For any pair (K0,K1), there

is an ε > 0 such that φt
R(K0) ∩K1 = ∅ for all t ∈ (0, ε).

This is a consequence of the Curve Selection Lemma [28, Lemma 3.1],
compare [30, Lemma 5.2.5]. Recall that, when defining the Floer cohomol-
ogy of two Lagrangian submanifolds, one often adds a Hamiltonian perturba-
tion H ∈ C∞(M,R) (for technical reasons, this Hamiltonian is usually also
taken to be time-dependent, but we suppress that here). The associated Floer
cochain complex is generated by the flow lines x : [0; 1] → M of H going from
L0 to L1; equivalently, these are the intersection points of φ1

X(L0)∩L1, where
X is the Hamiltonian vector field of H. We denote this cochain complex by

CF ∗(L0, L1;H) = CF ∗(φ1
X(L0), L1). (4)

In our case, we take an H which at infinity is of the form H(r, y) = h(er),
where h is a function with h′ ∈ (0; ε). Then, X is h′(er) times the Reeb
vector field R, hence φ1

X(L0) ∩ L1 is compact by Lemma 2.1. Standard ar-
guments show that the resulting Floer cohomology group HF ∗(L0, L1) =
HF ∗(L0, L1;H) is independent of H. It is also invariant under compactly
supported (exact Lagrangian) isotopies of either L0 or L1. Note that in the
case where K0 ∩ K1 = ∅, one can actually set h = 0, which yields Floer co-
homology in the ordinary (unperturbed) sense. Finally, for L0 = L1 = L one
has the usual reduction to Morse theory, so that HF ∗(L,L) ∼= H∗(L), even
for non-compact L.

At this point, we need to make a few more technical remarks. For sim-
plicity, all our Floer cohomology groups are with coefficients in some field
K. If char(K) �= 2, one needs (relative) Spin structures on all Lagrangian
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submanifolds involved, in order to address the usual orientation problems for
moduli spaces [13]. Next, Floer cohomology groups are generally only Z/2-
graded. One can upgrade this to a Z-grading by requiring that c1(M) = 0,
and choosing gradings of each Lagrangian submanifold. For the moment, we
do not need this, but it becomes important whenever one wants to make the
connection with objects of classical homological algebra, as in Theorem 2.3,
or in (1).

Example 2.2 Consider the case of cotangent bundles M = T ∗Z (to satisfy
the general requirements above, we should impose real-analyticity conditions,
but that is not actually necessary for the specific computations we are about
to do). A typical example of a Lagrangian submanifold L ⊂ M satisfying the
conditions set out above is the conormal bundle L = ν∗W of a closed subman-
ifold W ⊂ Z. If (L0, L1) are conormal bundles of transversally intersecting
submanifolds (W0,W1), then

HF ∗(L0, L1) ∼= H∗−codim(W0)(W0 ∩W1). (5)

This is easy to see (except perhaps for the grading), since the only intersection
points of the Lk lie in the zero-section. All of them have the same value of the
action functional, and standard Morse–Bott techniques apply.

As a parallel but slightly different example, let W ⊂ Z be an open subset
with smooth boundary. Take a function f : W → R which is strictly positive
in the interior, zero on the boundary, and has negative normal derivative
at all boundary points. We can then consider the graph of d(1/f), which
is a Lagrangian submanifold of M , asymptotic to the positive part of the
conormal bundle of ∂W . By a suitable isotopy, one can deform the graph so
that it agrees at infinity with that conormal bundle. Denote the result by L.
Given two such subsets Wk whose boundaries intersect transversally, one then
has [23, 24, 31]

HF ∗(L0, L1) ∼= H∗(W1 ∩W 0,W1 ∩ ∂W0). (6)

Note that in both these cases, the Lagrangian submanifolds under consider-
ation do admit natural gradings, so the isomorphisms are ones of Z-graded
groups.

We will need multiplicative structures on HF ∗, realized on the chain level
by an A∞-category structure. The technical obstacle, in the first non-trivial
case, is that the natural triangle product

CF ∗(L1, L2;H12) ⊗ CF ∗(L0, L1;H01)

= CF ∗(φ1
X12

(L1), L2) ⊗ CF ∗(φ1
X12

φ1
X01

(L0), φ1
X12

(L1))

−→ CF ∗(φ1
X12

φ1
X01

(L0), L2)

(7)

does not quite land in CF ∗(L0, L2;H02) = CF ∗(φ1
X02

(L0), L2). For instance,
if one takes the same H for all pairs of Lagrangian submanifolds, the output of
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the product has φ2
X = φ1

2X instead of the desired φ1
X . The solution adopted in

[30] is (roughly speaking) to choose all functions h involved to be very small,
in which case the deformation from X to 2X induces an actual isomorphism
of Floer cochain groups. The downside is that this can only be done for a
finite number of Lagrangian submanifolds and, more importantly, for a finite
number of A∞-products at a time. Hence, what one gets is a partially defined
Ad-structure (for d arbitrarily large), from which one then has to produce
a proper A∞-structure; for some relevant algebraic results, see [13, Lemma
30.163]. As an alternative, one can take all functions h to satisfy h(t) = log t,
which means H(r, y) = r. Then, φ2

X is conjugate to a compactly supported
perturbation of φ1

X (the conjugating diffeomorphism is the Liouville flow φt
Y

for time t = − log(2)). By making the other choices in a careful way, one
can then arrange that (7) takes values in a Floer cochain group which is
isomorphic to CF ∗(L0, L2;H02). In either way, one eventually ends up with
an A∞-category, which we denote by F(M).

2.2 Characteristic Cycles

Given a real-analytic manifold Z, one can consider sheaves of K-vector spaces
which are constructible (with respect to some real analytic stratification,
which may depend on the sheaf). Denote by Dc(Z) the full subcategory of the
bounded-derived category of sheaves of K-vector spaces comprising complexes
with constructible cohomology. Kashiwara’s characteristic cycle construction
[22] associates to any object G in this category a Lagrangian cycle CC(G) in-
side M = T ∗Z, which is a cone (invariant under rescaling of cotangent fibres).
If G is the structure sheaf of a closed submanifold, this cycle is just the conor-
mal bundle, otherwise it tends to be singular. Nadler and Zaslow consider the
structure sheaves of submanifolds W ⊂ Z which are (real-analytic but) not
necessarily closed. For each such “standard object”, they construct a smooth-
ing of CC(G), which is a Lagrangian submanifold of M . In the special case
where W is an open subset with smooth boundary, this is essentially equiva-
lent to the construction indicated in Example 2.2. The singular boundary case
is considerably more complicated and leads to Lagrangian submanifolds which
are generally only asymptotically invariant under the Liouville flow (their lim-
its at infinity are singular Legendrian cycles). Still, one can use them as objects
of a Fukaya-type category, which is a variant of the previously described con-
struction. We denote it by A(M), where A stands for “asymptotic”. The main
result of [30] is

Theorem 2.3 The smoothed characteristic cycle construction gives rise to a
full embedding of derived categories, Dc(Z) −→ DA(M).

The proof relies on two ideas. One of them, namely that the standard
objects generate Dc(Z), is more elementary (it can be viewed as a fact about
decompositions of real subanalytic sets). For purely algebraic reasons, this
means that it is enough to define the embedding only on standard objects.
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The other, more geometric, technique is the reduction of Floer cohomology to
Morse theory, provided by the work of Fukaya and Oh [12].

2.3 Decomposing the Diagonal

In Dc(Z), the structure sheaves of any two distinct points are algebraically
disjoint (there are no morphisms between them). Of course, the same holds
for cotangent fibres in the Fukaya category of M , which are the images of such
structure sheaves under the embedding from Theorem 2.3. As a consequence,
in F(M) (or A(M), the difference being irrelevant at this level) one cannot
expect to have a finite resolution of a closed exact L ⊂ M in terms of cotangent
fibres. However, Nadler proves a modified version of this statement, where the
fibres are replaced by standard objects associated with certain contractible
subsets of Z.

Concretely, fix a real analytic triangulation of Z. Denote by xi the vertices
of the triangulation, by Ui their stars, and by UI =

⋂
i∈I Ui the intersections

of such stars, indexed by finite sets I = {i0, . . . , id}. There is a standard Cech
resolution of the constant sheaf KZ in terms of the KUI

(we will encounter a
similar construction again later on, in Sect. 4.1). Rather than applying this
to Z itself, we take the diagonal inclusion δ : Z → Z × Z, and consider the
induced resolution of δ∗(KZ) by the objects δ∗(KUI

). Consider the embedding
from Theorem 2.3 applied to Z × Z. The image of δ∗(KZ) is the conormal
bundle of the diagonal Δ = δ(Z), and each δ∗(KUI

) maps to the standard
object associated to δ(UI) ⊂ Z × Z. Since each UI is contractible, one can
deform δ(UI) to UI × {xid

} (as locally closed submanifolds of Z × Z), and
this induces an isotopy of the associated smoothed characteristic cycles. A
priori, this isotopy is not compactly supported, hence not well-behaved in our
category (it does not preserve the isomorphism type of objects). However,
this is not a problem if one is only interested in morphisms from or to a given
closed Lagrangian submanifold.

To formalize this, take Acpt(M) to be the subcategory of A(M) consisting
of closed Lagrangian submanifolds (this is in fact the Fukaya category in
the classical sense). Dually, let mod(A(M)), mod(Acpt(M)) be the associated
categories of A∞-modules. There is a chain of A∞-functors

Acpt(M) −→ A(M) −→ mod(A(M)) −→ mod(Acpt(M)). (8)

The first and second one, which are inclusion and the Yoneda embedding, are
full and faithful. The last one, restriction of A∞-modules, will not generally
have that property. However, the composition of all three is just the Yoneda
embedding for Acpt, which is again full and faithful. In view of [40], and its
chain-level analogue [27], each object C in A(M × M) (and more generally,
twisted complex built out of such objects) induces a convolution functor

ΦC : Acpt(M) −→ mod(Acpt(M)) (9)
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(usually, one reverses the sign of the symplectic form on one of the two fac-
tors in M × M , but for cotangent bundles, this can be compensated by a
fibrewise reflection σ : M → M). First, take C to be the conormal bun-
dle of the diagonal, which is the same as the graph of σ. Then, convolution
with C is isomorphic to the embedding (8). On the other hand, if C is the
smoothed characteristic cycle of some product U × {x}, then ΦC maps each
object to a direct sum of copies of T ∗

x (the image of that fibre under the
functor A(M) → mod(Acpt(M)), to be precise). Finally, if C is just a La-
grangian submanifold, ΦC is invariant under Lagrangian isotopies which are
not necessarily compactly supported. By combining those facts, one obtains
the desired resolution of a closed exact L ⊂ M . Nadler actually pushes these
ideas somewhat further, using a refined version of this argument, to show that:

Theorem 2.4 The embedding Dc(Z) → DA(M) from Theorem 2.3 is an
equivalence.

Remark 2.5 If one is only interested in the spectral sequence (1), there
may be a potential simplification, which would bypass some of the cate-
gorical constructions above. First of all, rewrite HF ∗(L,L) ∼= H∗(L; K) as
HF ∗(L×L, ν∗Δ). Then, using the resolution of ν∗Δ in A(M ×M) described
above, one gets a spectral sequence converging towards that group, whose E1

page comprises the Floer cohomology groups between L×L and the smoothed
characteristic cycles of δ(UI). Since L× L is compact, one can deform δ(UI)
to UI × {xid

}, and from there construct an isotopy from its smoothed char-
acteristic cycle to T ∗

xid
⊗ T ∗

xid
. In the terminology used in (1), this brings the

terms in the E1 page into the form End(EL)xid
. To get the desired E2 term,

one would further have to check that the differentials reproduce the ones in
the Cech complex with twisted coefficients in End(EL). This of course follows
from Theorem 2.4, but there ought to be a more direct geometric argument,
just by looking at the relevant spaces of holomorphic triangles; this seems a
worth while endeavour, but we have not attempted to study it in detail.

3 Lefschetz Thimbles

This section gives an overview of the paper [14], and an account – emphasizing
geometric rather than algebraic aspects – of some of the underlying theory
from the book [36].

3.1 Fukaya Categories of Lefschetz Fibrations

In principle, the notion of Lefschetz fibration can be defined in a purely sym-
plectic way. However, we will limit ourselves to the more traditional algebro-
geometric context. Let X be a smooth affine variety, and

π : X −→ C (10)
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a polynomial, which has only non-degenerate critical points. For convenience,
we assume that no two such points lie in the same fibre. Additionally, we
impose a condition which excludes singularities at infinity, namely: let X̄ be
a projective completion of X, such that D = X̄ \X is a divisor with normal
crossing. We then require that (for an approriate choice of X̄) the closure
of π−1(0) should be smooth in a neighbourhood of D, and intersect each
component of D transversally. Finally, for Floer-theoretic reasons, we require
X to be Calabi–Yau (have trivial canonical bundle).

Take any Kähler form on X̄ which comes from a metric on O(D). Its re-
striction to X makes that variety into a Weinstein manifold (of finite type,
but not complete; the latter deficiency can, however, be cured easily, by at-
taching the missing part of the conical end). Moreover, parallel transport for
π is well-defined away from the singular fibres, in spite of its non-properness.

A vanishing path γ : [0,∞) → C is an embedding starting at a critical
value γ(0) of π, and such that for t � 0, γ(t) = const.− it is a half-line going
to −i∞. To each such path one can associate a Lefschetz thimble Δγ ⊂ X,
which is a Lagrangian submanifold diffeomorphic to R

n, projecting properly
to γ([0,∞)) ⊂ C. More precisely, γ−1 ◦ π|Δγ is the standard proper Morse
function on R

n with a single minimum (placed at the unique critical point of
π in the fibre over γ(0)). When defining the Floer cohomology between two
Lefschetz thimbles, the convention is to rotate the semi-infinite part of the
first path in anticlockwise direction for some small angle. Omitting certain
technical points, this can be interpreted as adding a Hamiltonian term as in
Sect. 2.1. In particular, one again has

HF ∗(Lγ , Lγ) ∼= H∗(Lγ ; K) = K. (11)

Now suppose that (γ0, . . . , γm) is a basis (sometimes also called a distinguished
basis) of vanishing paths. We will not recall the definition here; for a sketch,
see Fig. 1. In that situation, if one takes (γj , γk) with j > k and applies the
rotation described above to γj , the result remains disjoint from γk. Hence,

HF ∗(Lγj
, Lγk

) = 0 for all j > k. (12)

γ1

γ0

γ2

γ3

Fig. 1. A distinguished basis of vanishing paths
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As usual, rather than working on the level of Floer cohomology, we want to
have underlying A∞-structures. There is a convenient shortcut, which elimi-
nates non-compact Lagrangian submanifolds from the foundations of the the-
ory (but which unfortunately requires char(K) �= 2). Namely, let X̃ → X
be the double cover branched over some fibre π−1(−iC), C � 0. Roughly
speaking, one takes the ordinary Fukaya category F(X̃), which contains only
compact Lagrangian submanifolds, and defines F(π) to be its Z/2-invariant
part (only invariant objects and morphisms; obviously, getting this to work on
the cochain level requires a little care). This time, let us allow only vanishing
paths which satisfy γ(t) = −it for t ≥ C (which is no problem, since each
path can be brought into this form by an isotopy). One then truncates the
Lefschetz thimble associated to such a path, so that it becomes a Lagrangian
disc with boundary in π−1(−iC), and takes its preimage in X̃, which is a
closed Z/2-invariant Lagrangian sphere S̃γ ⊂ X̃. On the cohomological level,
the Z/2-invariant parts of the Floer cohomologies of these spheres still satisfy
the same properties as before, in particular reproduce (11) and (12).

Theorem 3.1 If (γ0, . . . , γm) is a basis of vanishing paths, the associated S̃γj

form a full exceptional collection in the derived category DF(π).

The fact that we get an exceptional collection is elementary; it just reflects
the two Eqs. (11) and (12) (or rather, their counterparts for the modified
definition of Floer cohomology involving double covers). Fullness, which is
the property that this collection generates the derived category, is rather more
interesting. The proof given in [36] relies on the fact that the product of Dehn
twists along the L̃γk

is isotopic to the covering involution in X̃. Hence, if
L ⊂ X is a closed Lagrangian submanifold which lies in π−1({im(z) > −C}),
this product of Dehn twists will exchange the two components of the preimage
L̃ ⊂ X̃. The rest of the argument essentially consists in applying the long exact
sequence from [34].

3.2 Postnikov Decompositions

We will use some purely algebraic properties of exceptional collections, see
for instance [15] (the subject has a long history in algebraic geometry; read-
ers interested in this might find the collection [32] to be a good starting
point). Namely, let C be a triangulated category, linear over a field K, and
let (Y0, . . . , Ym) be a full exceptional collection of objects in C. Then, for any
object X, there is a collection of exact triangles

Zk ⊗ Yk → Xk → Xk−1
[1]−→ Zk ⊗ Yk (13)

where Xm = X, X−1 = 0, and Zk = Hom∗
C(Yk,Xk) (morphisms of all degrees;

by assumption, this is finite-dimensional, so Zk⊗Yk is the direct sum of finitely
many shifted copies of Yk). The map Zk⊗Yk → Xk is the canonical evaluation
map, and Xk−1 is defined (by descending induction on k) to be its mapping
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cone. To get another description of Zk, one can use the unique (right) Koszul
dual exceptional collection (Y !

m, . . . , Y !
0), which satisfies

Hom∗
C(Yj , Y

!
k) =

{
K (concentrated in degree zero) j = k,

0 otherwise.
(14)

It then follows by repeatedly applying (13) that Z∨
k

∼= Hom∗
C(X,Y !

k). Now,
given any cohomological functor R on C, we get an induced spectral se-
quence converging to R(X), whose starting page has columns Ers

1 = (Z∨
m−r ⊗

R(Ym−r))r+s. In particular, taking R = Hom∗
C(−,X) and using the ex-

pression for Zk explained above, we get a spectral sequence converging to
Hom∗

C(X,X), which starts with

Ers
1 =

(
Hom∗

C(X,Y !
m−r) ⊗Hom∗

C(Ym−r,X)
)r+s

. (15)

We now return to the concrete setting where C = DF(π). In this case, the
Koszul dual of an exceptional collection given by a basis of Lefschetz thimbles
is another such basis {γ!

0, . . . , γ
!
m}. This is a consequence of the more general

relation between mutations (algebra) and Hurwitz moves on vanishing paths
(geometry). Applying (15), and going back to the original definition of Floer
cohomology, we therefore get the following result: for every (exact, graded,
spin) closed Lagrangian submanifold L ⊂ M , there is a spectral sequence
converging to HF ∗(L,L) ∼= H∗(L; K), which starts with

Ers
1 = (HF (L,Δγ!

m−r
) ⊗HF (Δγm−r

, L))r+s. (16)

3.3 Real Algebraic Approximation

The existence of (16) is a general statement about Lefschetz fibrations. To
make the connection with cotangent bundles, we use a form of the Nash–
Tognoli theorem, see for instance [19], namely:

Lemma 3.2 If Z is a closed manifold and p : Z → R is a Morse function,
there is a Lefschetz fibration π : X → C with a compatible real structure, and
a diffeomorphism f : Z → XR, such that π ◦ f is C2-close to p.

The diffeomorphism f can be extended to a symplectic embedding φ of a
neighbourhood of the zero-section of Z ⊂ M = T ∗Z into X. Hence (perhaps
after a preliminary radial rescaling) we can transport closed exact Lagrangian
submanifolds L ⊂ M over to X. The critical points of π fall into two classes,
namely real and purely complex ones, and the ones in the first class correspond
canonically to critical points of p. By a suitable choice of vanishing paths, one
can ensure that

HF ∗(Δγk
, φ(L))

∼=
{
HF ∗(T ∗

xk
, L) if γ(0) ∈ XR corresponds to xk ∈ Crit(p),

0 otherwise.

(17)
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Here, the Floer cohomology on the right-hand side is taken inside T ∗Z. The
same statement holds for the other groups in (16), up to a shift in the grading
which depends on the Morse index of xk. As a consequence, the starting page of
that spectral sequence can be thought of as C∗

Morse(Z;End∗(EL)), where the
Morse complex is taken with respect to the function p, and using the (graded)
local coefficient system EL. This is one page earlier than our usual starting
term (1), but is already good enough to derive Theorem 1.1 by appealing to
some classical manifold topology (after taking the product with a sphere if
necessary, one can assume that dim(Z) > 5, in which case simple connectivity
of Z implies that one can choose a Morse function without critical points of
index or co-index 1).

Remark 3.3 The differential on the E1-page of (16) is given in [36, Corollary
18.27], in terms of holomorphic triangle products between adjacent Lefschetz
thimbles in the exceptional collection. In the special situation of (17), identify-
ing the E1 page with C∗

Morse(Z;End(EL)), there is also the Morse differential
δ coming from parallel transport in the local system EL → Z (compare Re-
mark 2.5). For Lefschetz fibrations arising from real algebraic approximation,
rather than some more canonical construction, there seems to be no reason
for these to agree in general; but one does expect the parts of the differen-
tial leading out of the first column, and into the last column, to agree. For
instance, by deforming the final vanishing path to lie along the real axis, one
can ensure that the entire thimble leading out of the maximum xmax of the
Morse function is contained in the real locus, after which the intersection
points between this thimble and one coming from a critical point x of index
one less correspond bijectively to the gradient lines of the Morse function be-
tween xmax and x (the situation at the minimum xmin is analogous). If it was
known that this part of the E1-differential did reproduce the corresponding
piece of δ, one could hope to study non-simply-connected cotangent bundles
in this approach.

4 Family Floer Cohomology

This section covers the third point of view on Theorem 1.1. This time, the
presentation is less linear, and occasionally several ways of reaching a par-
ticular goal are sketched. The reader should keep in mind the preliminary
nature of this discussion. In some parts, this means that there are complete
but unpublished constructions. For others, only outlines or strategies of proof
exist, in which case we will be careful to formulate the relevant statements as
conjectures.

4.1 Cech Complexes

At the start of the chapter, we mentioned that to an L ⊂ M = T ∗Z one
can associate the bundle EL of Floer cohomologies Ex = HF ∗(T ∗

x , L). One
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naturally wants to replace EL by an underlying cochain level object EL, which
should be a “sheaf of complexes” in a suitable sense. In our interpretation,
this will be a dg module over a dg algebra of Cech cochains (there are several
other possibilities, with varying degrees of technical difficulty; see [10, Sect. 5]
and [29, Sect. 4] for sketches of two of these, and compare also to [18]).

Fix a smooth triangulation of Z, with vertices xi, and let UI be the inter-
sections of sets in the associated open cover, just as in Sect. 2.3 (but omitting
the real analyticity condition). This time, we want to write down the associ-
ated Cech complex explicitly, hence fix an ordering of the i’s. Let Γ (UI) be
the space of locally constant K-valued functions on UI , which in our case is
K if UI �= ∅, and 0 otherwise. The Cech complex is

C =
⊕

I

Γ (UI)[−d] (18)

where d = |I| − 1. This carries the usual differential, and also a natural
associative product making it into a dg algebra. Namely, for every possible
splitting of I ′′ = {i0 < · · · < id} into I ′ = {i0 < · · · < ik} and I = {ik < · · · <
id}, one takes

Γ (UI) ⊗ Γ (UI′) restriction−−−−−−→ Γ (UI′′) ⊗ Γ (UI′′)
multiplication−−−−−−−−−→ Γ (UI′′). (19)

We want to consider (unital right) dg modules over C. Denote the dg category
of such modules by M = mod(C). This is not a dg model for the derived
category: there are acyclic modules which are non-trivial in H(M), and as a
consequence, quasi-isomorphism does not imply isomorphism in that category.

All objects we will consider actually belong to a more restricted class,
distinguished by a suitable “locality” property; we call these dg modules of
presheaf type. The definition is that such a dg module E needs to admit a
splitting

E =
⊕

I

EI [−d], (20)

where the sum is over all I = {i0 < · · · < id} such that UI �= ∅. This splitting
is required to be compatible with the differential and module structure. This
means that the differential maps EI to the direct sum of EI′ over all I ′ ⊃ I;
that 1 ∈ Γ (Ui′) acts as the identity on EI [−d] for all I = {i0 < · · · < id} with
id = i′, and as zero otherwise; and that the component EI ⊗ Γ (UI′) −→ EI′′

of the module structure can only be non-zero if I ′′ ⊃ I ∪ I ′. In particular, the
“stalks” EI themselves are subquotients of E , and inherit a dg module structure
from that. The stalks associated to the smallest subsets of Z (i.e. to maximal
index sets I) are actually chain complexes, with all chain homomorphisms
being module endomorphisms, from which one can show:

Lemma 4.1 Let E be a dg module of presheaf type. If each EI is acyclic, E
itself is isomorphic to the zero object in H(M).
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Here is a first example. Let P → Z be a flat K-vector bundle (or local
coefficient system). For each I = {i0 < · · · < id} such that UI �= ∅, define
(EP )I = Pxid

. Form the direct sum EP as in (20). Equivalently, one can think
of this as the sum of Pxid

⊗ Γ (UI) over all I, including empty ones. The
differential consists of terms (EP )I → (EP )I′ for I = {i0 < · · · < id}, I ′ =
I ∪ {i′}. If i′ < id, these are given (up to sign) by restriction maps Pxid

⊗
Γ (UI) → Pxid

⊗ Γ (UI′). In the remaining non-trivial case where i′ > id
and UI′ �= ∅, there is a unique edge of our triangulation going from xid

to
xi′ , and one combines restriction with parallel transport along that edge. The
module structure on EP is defined in the obvious way, following the model (19);
compatibility of the differential and the right C-module structure is ensured by
our choice (EP )I = Pxid

, taking the fibre of P over the vertex corresponding
to the last index id of I. Clearly, H∗(EP ) ∼= H∗(Z;P ) is ordinary cohomology
with P -coefficients. Moreover, using the fact that every EP is free as a module
(ignoring the differential), one sees that

H∗(homM(EP0 , EP1)) ∼= H∗(Z;Hom(P0, P1)). (21)

In particular, referring back to the remark made above, this leads to quite
concrete examples of acyclic dg modules which are nevertheless non-trivial
objects (since they have non-trivial endomorphism rings).

Still within classical topology, but getting somewhat closer to the in-
tended construction, suppose now that Q → Z is a differentiable fibre bundle,
equipped with a connection. For I = i0 < · · · < id with UI �= ∅, define

(EQ)I = C−∗(Qxid
), (22)

where C−∗ stands for cubical cochains, with the grading reversed (to go
with our general cohomological convention). As before, we want to turn the
(shifted) direct sum of these into a dg module over C. The module structure
is straightforward, but the differential is a little more interesting, being the
sum of three terms. The first of these is the ordinary boundary operator on
each (EQ)I . The second one is the Cech differential (EQ)I → (EQ)I′ , where
I = {i0 < · · · < id} and I ′ = I ∪ {i′} with i′ < id. The final term consists of
maps

C−∗(Qxid
) −→ C−∗(Qxi′e

)[1 − e] (23)

where I = {i0 < · · · < id}, I ′ = I ∪ {i′1 < · · · < i′e} with id < i′1. Take
the standard e-dimensional simplex Δe. It is a classical observation [3] that
there is a natural family of piecewise smooth paths in Δe, parametrized
by an (e − 1)-dimensional cube, which join the first to the last vertex. In
our situation, the triangulation of Z contains a unique simplex with vertices
{id, i′1, . . . , i′e}, and we therefore get a family of paths joining xid

to xi′e . The
resulting parametrized parallel transport map

[0; 1]e−1 ×Qxid
−→ Qxi′e

(24)
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induces (23) (up to sign; the appearance of a cube here motivated our use of
cubical chains). It is not difficult to show that the resulting total differential
on EQ indeed squares to zero, and is compatible with the module structure.

Finally, let us turn to the symplectic analogue of this, in which one starts
with a closed exact Lagrangian submanifold L ⊂ M = T ∗Z (subject to the
usual conditions: if one wants Z-graded modules, L should be graded; and if
one wants to use coefficient fields char(K) �= 2, it should be relatively spin).
The appropriate version of (22) is

(EL)I = CF ∗(T ∗
xid

, L) (25)

and again, EL is the sum of these. In the differential, we now use the
Floer differential on each CF ∗ summand (replacing the differential on cu-
bical chains), and continuation maps or their parametrized analogues (rather
than parallel transport maps), which govern moving one cotangent fibre into
the other. (Related continuation maps appeared in [24].) Of course, the de-
tails are somewhat different from the previous case. To get a chain map
CF ∗(T ∗

xid
, L) → CF ∗(T ∗

xi′1
, L), one needs a path

γ : R −→ Z, γ(s) = xid
for s � 0, γ(s) = xi′1

for s � 0. (26)

More generally, families of such paths parametrized by [0; 1)e−1 appear. In
the limit as one (or more) of the parameters go to 1, the path breaks up into
two (or more) pieces separated by increasingly long constant stretches. This
ensures that the usual composition laws for continuation maps apply, compare
[33]. Still, with these technical modifications taken into account, the argument
remains essentially the same as before.

4.2 Wrapped Floer Cohomology

One naturally wants to extend the previous construction to allow L to be
non-compact (for instance, a cotangent fibre). This would be impossible using
the version of Floer cohomology from Sect. 2.1, since that does not have suf-
ficiently strong isotopy invariance properties: HF ∗(T ∗

x , L) generally depends
strongly on x. Instead, we use a modified version called “wrapped Floer co-
homology”. This is not fundamentally new: it appears in [1] for the case of
cotangent bundles, and is actually the open string analogue of Viterbo’s sym-
plectic cohomology [38].

Take a Weinstein manifold M (complete and of finite type) and consider
exact Lagrangian submanifolds inside it which are Legendrian at infinity; this
time, no real analyticity conditions will be necessary. We again use Hamilto-
nian functions of the form H(r, y) = h(er) at infinity, but now require that
limr→∞ h′(er) = +∞. This means that as one goes to infinity, the associated
Hamiltonian flow is an unboundedly accelerating version of the Reeb flow.
Denote by CW ∗(L0, L1) = CF ∗(L0, L1;H) = CF ∗(φ1

X(L0), L1) the resulting
Floer complex, and by
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HW ∗(L0, L1) = H(CW ∗(L0, L1)) (27)

its cohomology, which we call wrapped Floer cohomology. This is independent
of the choice of H. Moreover, it remains invariant under isotopies of either L0

or L1 inside the relevant class of submanifolds. Such isotopies need no longer
be compactly supported; the Legendrian submanifolds at infinity may move
(which is exactly the property we wanted to have). By exploiting this, it is easy
to define a triangle product on wrapped Floer cohomology. In the case where
L0 = L1 = L, we have a natural map from the ordinary cohomology H∗(L)
to HW ∗(L,L), which however is generally neither injective nor surjective. For
instance, for L = R

n inside M = C
n, HW ∗(L,L) vanishes. Another, far less

trivial, example is the following one:

Theorem 4.2 (Abbondandolo–Schwarz) Let M = T ∗Z be the cotangent
bundle of a closed oriented manifold, and take two cotangent fibres L0 = T ∗

x0
Z,

L1 = T ∗
x1
Z. Then HW ∗(L0, L1) ∼= H−∗(Px0,x1) is the (negatively graded)

homology of the space of paths in Z going from x0 to x1.

This is proved in [1]; the follow-up paper [2] shows that this isomorphism
sends the triangle product on HW ∗ to the Pontryagin product (induced by
composition of paths) on path space homology.

We want our wrapped Floer cochain groups to carry an A∞-structure, re-
fining the cohomology level product. When defining this, one encounters the
same difficulty as in (7). Again, there is a solution based on a rescaling trick:
one takes h(t) = 1

2 t
2, and uses the fact that φ2

X differs from φ
− log(2)
Y φ1

Xφ
log(2)
Y

(φY being the Liouville flow) only by a compactly supported isotopy. This
is particularly intuitive for cotangent bundles, where the radial coordinate
at infinity is er = |p|; then, H = h(er) = 1

2 |p|2 gives rise to the standard
geodesic flow (φt

X), and Y = p∂p is the rescaling vector field, meaning that
φ

log(2)
Y doubles the length of cotangent vectors. An alternative (not identical,

but ultimately quasi-isomorphic) approach to the same problem is to define
wrapped Floer cohomology as a direct limit over functions Hk with more
moderate growth Hk(r, y) = ker at infinity. However, the details of this are
quite intricate, and we will not describe them here. In either way, one gets an
A∞-category W(M), which we call the wrapped Fukaya category. For cotan-
gent bundles M = T ∗Z, a plausible cochain level refinement of Theorem 4.2
is the following one:

Conjecture 4.3 Let L = T ∗
x be a cotangent fibre. Then, the A∞-structure

on CW ∗(L,L) should be quasi-isomorphic to the dg algebra structure on
C−∗(Ωx), where Ωx is the (Moore) based loop space of (Z, x).

Returning to the general case, we recall that a fundamental property of
symplectic cohomology, established in [38], is Viterbo functoriality with re-
spect to embeddings of Weinstein manifolds. One naturally expects a cor-
responding property to hold for wrapped Fukaya categories. Namely, take a
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bounded open subset U ⊂ M with smooth boundary, such that Y points out-
wards along ∂U . One can then attach an infinite cone to ∂U , to form another
Weinstein manifold M ′ = U ∪∂U ([0;∞) × ∂U). Suppose that (L1, . . . , Ld) is
a finite family of exact Lagrangian submanifolds in M , which are Legendrian
at infinity, and with the following additional property: θ|Lk = dRk for some
compactly supported function Rk, which in addition vanishes in a neighbour-
hood of Lk ∩ ∂U . This implies that Lk ∩ ∂U is a Legendrian submanifold of
∂U . Again, by attaching infinite cones to Lk ∩ U , one gets exact Lagrangian
submanifolds L′

k ⊂ M ′, which are Legendrian at infinity. Let A ⊂ W(M) be
the full A∞-subcategory with objects Lk, and similarly A′ ⊂ W(M ′) for L′

k.
Then,

Conjecture 4.4 (Abouzaid-Seidel) There is a natural (up to isomorphism)
A∞-functor R : A → A′.

Note that, even though we have not mentioned this explicitly so far, all
A∞-categories under consideration have units (on the cohomological level),
and R is supposed to be a (cohomologically) unital functor. Hence, the con-
jecture implies that various relations between objects, such as isomorphism or
exact triangles, pass from A to A′, which is a non-trivial statement in itself.

4.3 Family Floer Cohomology Revisited

For M = T ∗Z, there is a straightforward variation of the construction from
Sect. 4.1, using wrapped Floer cohomology instead of ordinary Floer coho-
mology. This associates to any exact Lagrangian submanifold L ⊂ M , which
is Legendrian at infinity, a dg module EL over C. In fact, it gives rise to an
A∞-functor

G : W(M) −→ M = mod(C). (28)

While little has been rigorously proved so far, there are plausible expectations
for how this functor should behave, which we will now formulate precisely.
Take Q → Z to be the path fibration (whose total space is contractible).
Even though this is not strictly a fibre bundle, the construction from Sect. 4.1
applies, and yields a dg module EQ, which has H∗(EQ) ∼= K (this can be
viewed as a resolution of the simple C-module).

Conjecture 4.5 Let L = T ∗
x be a cotangent fibre. Then, EL is isomorphic

to EQ in H(M). Moreover, if Z is simply connected, G gives rise to a quasi-
isomorphism C−∗(Ωx) ∼= CW ∗(L,L) → homM(EL, EL).

The first statement can be seen as a parametrized extension of Theorem
4.2. A possible proof would be to consist of checking that the chain level maps
constructed in [1] can be made compatible with parallel transport (respectively
continuation) maps, up to a suitable hierarchy of chain homotopies. This
would yield a map of dg modules; to prove that it is an isomorphism, one
would then apply Lemma 4.1 to its mapping cone. The second part of the
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conjecture is less intuitive. The assumption of simple connectivity is necessary,
otherwise the endomorphisms of EQ may not reproduce the homology of the
based loop space (see Sect. 4.4 for further discussion of this); however, it is
not entirely clear how that would enter into a proof.

Conjecture 4.6 Any one fibre L = T ∗
x generates the derived category (taken,

as usual, to be the homotopy category of twisted complexes) of W(M).

There are two apparently quite viable approaches to this, arising from
the contexts of Sects. 2 and 3, respectively. To explain the first one, we go
back to the general situation where M is a finite-type complete Weinstein
manifold, whose end is modelled on the contact manifold N , and where real
analyticity conditions are imposed on N and its Legendrian submanifolds.
Then, if (L0, L1) are exact Lagrangian submanifolds which are Legendrian at
infinity, we have a natural homomorphism

HF ∗(L0, L1) −→ HW ∗(L0, L1), (29)

which generalizes the map H∗(L) → HW ∗(L,L) mentioned in Sect. 4.2. These
maps are compatible with triangle products, and even though the details have
not been checked, it seems plausible that they can be lifted to an A∞-functor
F(M) → W(M). Actually, what one would like to use is a variant of this,
where F(M) is replaced by the Nadler–Zaslow category A(M), or at least a
sufficiently large full subcategory of it. Assuming that this can be done, one
can take the generators of A(M) provided by the proof of Theorem 2.4, and
then map them to W(M), where isotopy invariance ought to ensure that they
all become isomorphic to cotangent fibres (note that in the wrapped Fukaya
category, any two cotangent fibres are mutually isomorphic).

The second strategy for attacking Conjecture 4.6 is fundamentally similar,
but based on Lefschetz fibrations. Recall that with our definition, the total
space of a Lefschetz fibration π : X → C is itself a finite type Weinstein
manifold. One then expects to have a canonical functor F(π) → W(X). Given
a Lefschetz fibration constructed as in Sect. 3.3 by complexifying a Morse
function on Z, one would then combine F(π) → W(X) with the functor from
Conjecture 4.4, applied to a small neighbourhood of Z embedded into X. The
outcome would be that the restrictions of Lefschetz thimbles generate the
wrapped Fukaya category of that neighbourhood. One can easily check that
all such restrictions are isomorphic to cotangent fibres.

Suppose now that Z is simply connected. In that case, if one accepts
Conjectures 4.5 and 4.6, it follows by purely algebraic means that (28) is full
and faithful. Take the dg module EL =

⊕
I(EL)I [−d] obtained from a closed

exact L ⊂ M , and equip it with the decreasing filtration by values of d =
|I|−1. The associated graded space is precisely the dg module EP constructed
from the local coefficient system Px = HW ∗(T ∗

x , L) = HF ∗(T ∗
x , L). Hence,

one gets a spectral sequence which starts with H∗(Z;End(P )) according to
(21), and converges to the group H(homM(EL, EL)), which would be equal
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to HF ∗(L,L) ∼= H∗(L; K) as a consequence of Conjecture 4.5. This explains
how (1) arises from this particular approach.

4.4 The (Co)bar Construction

There is a more algebraic perspective, which provides a shortcut through part
of the argument above. To explain this, it is helpful to recall the classical
bar construction. Let C be a dg algebra over our coefficient field K, with an
augmentation ε : C → K, whose kernel we denote by I. One can then equip
the free tensor coalgebra T (I[1]) with a differential, and then dualize it to a
dg algebra B = T (I[1])∨. Consider the standard resolution R = T (I[1]) ⊗ C
of the simple C-module C/I. One can prove that the endomorphism dga of
R as an object of mod(C) is quasi-isomorphic to B. For standard algebraic
reasons, this induces a quasi-equivalence between the subcategory of mod(C)
generated by R, and the triangulated subcategory of mod(B) generated by
the free module B. Denote that category by modf(B).

The relevance of this duality to our discussion is a basic connection to
loop spaces, which goes back to Adams [3]. He observed that if Z is simply
connected, and C is the dg algebra of Cech cochains, then B is quasi-isomorphic
to C−∗(ΩZ). Hence, reversing the functor above, we get a full and faithful
embedding

H(modf(C−∗(ΩZ))) −→ H(M), (30)

where M = mod(C) as in (28). If one moreover assumes that Conjec-
tures 4.3 and 4.6 hold, it follows that W(M) itself is derived equivalent to
H(modf(C−∗(ΩZ))). Hence, one would get a full embedding of the wrapped
Fukaya category into H(M) for algebraic reasons, avoiding the use of Cech
complexes altogether.

5 The Non-simply-Connected Case

In this final section, we discuss exact Lagrangian submanifolds in non-simply-
connected cotangent bundles. Specifically, we prove Corollary 1.3, and then
make a few more observations about the wrapped Fukaya category.

5.1 A Finite Covering Trick

We start by recalling the setup from Sect. 2. Fix a real analytic structure
on Z, and the associated category A(M). For any closed exact Lagrangian
submanifold L ⊂ M = T ∗Z which is spin and has zero Maslov class, we have
the spectral sequence

Epq
2 = Hp(Z;Endq(EL)) ⇒ H∗(L; K)
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arising from the resolution of L by “standard objects” in A(M). From now on,
we assume that char(K) = p > 0. In that case, one can certainly find a finite
covering b : Z̃ → Z such that b∗EL is trivial (as a graded bundle of K-vector
spaces). In fact, EL gives rise to a representation ρ : π1(Z) → GLr(K), and
one takes Z̃ to be the Galois covering associated to ker(ρ) ⊂ π1(Z). Set
M̃ = T ∗Z̃, denote by β : M̃ → M the induced covering, and by L̃ = β−1(L)
the pre-image of our Lagrangian submanifold. This inherits all the properties
of L, hence we have an analogous spectral sequence for L̃. Note also that for
obvious reasons, the associated bundle of Floer cohomologies satisfies

EL̃
∼= b∗EL, (31)

hence is trivial by definition. Now, the discussion after (1) carries over with no
problems to the non-simply-connected case if one assumes that the Lagrangian
submanifold is connected, and its bundle of Floer cohomologies is trivial. In
particular, one gets that L̃ is in fact connected: if it were not, the analogue of
Theorem 1.1(iii) would apply to its connected components (since their Floer
cohomology bundles are also trivial), implying that any two would have to
intersect each other, which is a contradiction. With connectedness at hand,
it then follows by the same argument that (31) has one-dimensional fibres.
Hence, End(EL) is trivial, which means that the spectral sequence for the
original L degenerates, yielding H∗(L; K) ∼= H∗(Z; K). In fact, by borrowing
arguments from [29] or from [14], one sees that in the Fukaya category of M ,
L is isomorphic to the zero-section equipped with a suitable spin structure
(the difference between that and the a priori chosen spin structure on Z is
precisely described by the bundle EL, which, note, has structure group ±1).
Using that, one also gets the analogue of part (iii) of Theorem 1.1. Finally, the
cohomological restrictions (i–iii) of Theorem 1.1 for arbitrary fields of positive
characteristic imply them for K with char(K) = 0, which completes the proof
of Corollary 1.3.

5.2 The Eilenberg–MacLane Case

For general algebraic reasons, there is an A∞-functor

W(M) −→ mod(CW ∗(T ∗
x , T

∗
x )). (32)

Here, the right-hand side is the dg category of A∞-modules over the endo-
morphism A∞-algebra of the object T ∗

x . Now suppose that Z = K(Γ, 1) is an
Eilenberg–MacLane space, so that the cohomology of CW ∗(T ∗

x , T
∗
x ) is concen-

trated in degree zero. By the Homological Perturbation Lemma, this implies
that the A∞-structure is formal, hence by Theorem 4.2 quasi-isomorphic to
the group algebra K [Γ ] (this argument allows us to avoid Conjecture 4.3).
However, in order to make (32) useful, we do want to appeal to (the currently
unproven) Conjecture 4.6. Assuming from now on that it is true, one finds that
(32) is a full embedding and actually lands (up to functor isomorphism) in the
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subcategory modf(K [Γ ]) generated by the one-dimensional free module. As
far as that subcategory is concerned, one could actually replace A∞-modules
by ordinary chain complexes of K [Γ ]-modules. This gives a picture of W(M)
in classical algebraic terms.

To see how this might be useful, let us drop the assumption that the
Maslov class is zero and consider general closed, exact, and spin Lagrangian
submanifolds L ⊂ M . Neither of the two arguments in favour of Conjecture 4.6
sketched in Sect. 4.3 actually uses the Maslov index. It is therefore plausible
to assume that the description of W(M) explained above still applies. Denote
by NL the Z/2-graded A∞-module over K [Γ ] corresponding to L, and by NL

its cohomology module. In fact, NL is nothing other than our previous family
Floer cohomology bundle EL, now considered as a module over Γ = π1(Z).
There is a purely algebraic obstruction theory, which determines when an
A∞-module is formal (isomorphic to its cohomology). The obstructions lie in

Extr
K[Γ ](NL, NL[1 − r]), r ≥ 2 (33)

where the [1 − r] now has to be interpreted mod 2. In particular, if all those
groups vanish, it would follow directly that NL is formal. However, there is
no particular a priori reason why that should happen.

Returning to the trick from Sect. 5.1, assume now that char(K) = p > 0.
Then, after passing to a finite cover, one can assume that NL is a direct sum of
trivial representations, hence (33) is a direct sum of copies of Hr(Γ ; K). One
can try to kill the relevant obstructions by passing to further finite covers (with
respect to which the obstructions are natural). Generally, this is unlikely to
be successful (there are examples of mod p cohomology classes which survive
pullback to any finite cover, see for instance [9, Theorem 6.1]). However, in
the special case where H∗(Γ ; K) is generated by degree 1 classes, such as for
surfaces or tori, it is obviously possible. In those cases, one could then find a
finite cover b : Z̃ → Z, inducing β : M̃ → M , such that the A∞-module NL̃

associated with L̃ = β−1(L) is isomorphic to a direct sum of ordinary trivial
modules. Just by looking at the endomorphism ring of this object, it becomes
clear that there can actually be only one summand, so L̃ is isomorphic to the
zero-section. One can then return to M by the same argument as before, and
obtain the same consequences as in the original Theorem 1.1. This would be
a potential application of the machinery from Sect. 4 which has no obvious
counterpart in the other approaches.

Finally, note that the appeal to Conjecture 4.6 above can be sidestepped,
at least working over fields of characteristic not equal to two, in the special
case where T ∗Z admits a Lefschetz pencil for which, for suitable vanishing
paths, the Lefschetz thimbles are globally cotangent fibres. This is, of course,
an exceptional situation, but it can be achieved for suitable Lefschetz pencils
on the affine variety T ∗Tn = (C∗)n (complexify a Morse function which is a
sum of height functions on the distinct S1-factors of Tn).
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Abstract. We define D-branes in linear sigma models corresponding to toric
Calabi–Yau varieties. This enables us to study the transportation of D-branes along
general paths in the Kähler moduli space. The most important finding is the grade
restriction rule. It classifies Chan–Paton representations of the gauge group that are
allowed when we cross the phase boundaries. Upon reduction to the chiral sector,
we find equivalences of the derived categories on different toric varieties on the same
Kähler moduli space.

1 Introduction

An important problem of string theory is to understand D-branes in Calabi–
Yau varieties, in particular their dependence on complex structure as well
as on Kähler moduli. In [1] a progress in describing B-type D-branes in non-
geometric regimes is made purely from the worldsheet point of view. This note
is a report on that work and attempts to present the basic idea of half of the
story — D-branes in (non-compact) toric Calabi–Yau varieties. For complete
details and for the other half of the story — D-branes in compact Calabi–Yau
varieties — the reader is encouraged to see the original paper [1].

By B-type D-branes we mean holomorphic branes such as branes wrapped
on complex submanifolds and those supporting holomorphic vector bundles.
Upon truncation to the chiral sector, they are described through the derived
category of coherent sheaves [2, 3, 4]. When investigating the dependence
on the Kähler moduli space, its subdivision into phases (or Kähler cones)
has to be taken into account. Each phase is associated with a toric variety
and moving between them corresponds to generalized flop transitions — a
sequence of blow-downs and blow-ups. When we consider B-type D-branes, a
natural question comes up: How do they behave under such flops?

At this stage we realize that the above question can be asked only when
we have a definition of D-branes deep inside the Kähler moduli space, in
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particular near the phase boundaries. The main purpose of the work [1] is
to provide such a definition. We do this by using linear sigma models [5] to
realize the bulk theory.

On physical grounds the chiral sector of B-type D-branes does not change
under Kähler deformations, which suggests that flops do not affect the derived
category of coherent sheaves, i.e. the derived categories of the different phases
of the same Kähler moduli space are indeed equivalent. The correct definition
of B-type D-branes must respect this property and our construction passes
this criterion. From the mathematical perspective such equivalences have been
studied before. Widely known examples are the McKay correspondence [6] as
well as the elementary flop transition of the resolved conifold [7]. A general
treatment of transitions was given by Kawamata [8] and the one-parameter
case was treated by van den Bergh [9]. In fact, the equivalences that appear in
these works come out naturally in the context of our work and furthermore we
are able to provide a new picture for multi-parameter cases. We also obtain
a new perspective of monodromies around special loci in the Kähler moduli
space and reproduce known results obtained through mirror symmetry. This
provides further support of our contruction.

In this note we outline the definition of B-type D-branes in linear sigma
models and their relation to the low energy D-branes on the toric varieties.
Studying the moduli dependence leads us to an effective method of mapping
D-branes between phases. The key point is a certain condition on D-branes
that follows from the physics of the linear sigma model close to the boundary
of two adjacent phases. We shall call it the grade restriction rule.

After summarizing some generalities on linear sigma models, we introduce
B-type D-brane in Sect. 2. In order to keep the presentation simple we explain
the main points in an example throughout the note. The maps to low energy
D-branes on the toric varieties are explained in Sect. 3. Our key result is
discussed thereafter in Sect. 4, where D-branes are transported across phase
boundaries. We close this note with some comments on relations to earlier
work in the literature in Sect. 5.

1.1 The Bulk Theory

Let us consider an N = (2, 2) supersymmetric linear sigma model in 1 + 1
dimensions with n complex scalar fields xi for i = 1, . . . , n and an Abelian
gauge group T = U(1)k, where the action of the ath component U(1)a, a =
1, . . . , k, is specified by the integral, coprime gauge charges (Qa

1 , . . . , Q
a
n):

(x1, . . . , xn) 
→ (eiQa
1ϕax1, . . . , e

iQa
nϕaxn) .

Each xi has one Dirac fermion and a complex auxiliary scalar as its super-
partner, while the partners of the U(1)a gauge field va are one complex scalar
σa, one Dirac fermion and a real auxilary scalar field. For simplicity, we turn
off the superpotential in this report.
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The scalar potential of the theory is

U =
k∑

a=1

e2
a

2

(
n∑

i=1

Qa
i |xi|2 − ra

)2

+
n∑

i=1

∣
∣
∣
∣
∣

k∑

a=1

Qa
i σaxi

∣
∣
∣
∣
∣

2

. (1)

Here, ea are the gauge coupling constants. The real parameters ra for a =
1, . . . , k are referred to as Fayet–Iliopoulos parameters and we denote the
space spanned by them by R

k
FI. The theory also depends on the theta angles

θa that appear in the topological term,

1
2π

k∑

a=1

∫

Σ

θadva . (2)

They are angular parameters, θa ≡ θa + 2π. We combine ra and θa into a
complex parameter ta = ra − iθa.

We focus on models with axial and vector R-symmetries at all energies,
that is, models obeying the Calabi-Yau condition,

n∑

i=1

Qa
i = 0, for a = 1, . . . , k . (3)

The absence of the axial anomaly ensures that the theory does depend on the
k theta angles. The vector R-symmetry that becomes a part of the supercon-
formal symmetry in the infra-red limit will play an important rôle when we
consider D-branes later on. In the model without superpotential, the correct
R-symmetry is the one with all the fields x1, . . . , xn having trivial R-charges.

1.2 The Phases

We are interested in the low-energy theory. Its character is determined by
the locus of classical vacua, U = 0. At a generic point of R

k
FI, the first term

in U leads to the vacuum equation (the D-term equation),
∑n

i=1 Q
a
i |xi|2 =

ra, which requires that xi are ‘maximal rank’, so that the gauge group is
completely broken or broken to a discrete subgroup. Then, the second term
in the potential sets σa = 0 for a = 1, . . . , k.

However, at particular (k − 1)-dimensional walls in R
k
FI the D-term equa-

tion admits a solution with an unbroken U(1) subgroup of T so that σ is
allowed to have large values in the corresponding direction. This signals a
singularity of the theory. The walls divide the FI-parameter space into cone
domains, which are called phases or Kähler cones. Accordingly, the walls them-
selves are called phase boundaries [5, 14].

Taking into account the gauge group T the (classical) vacuum configura-
tion is given by the symplectic quotient {

∑n
i=1 Q

a
i |xi|2 = ra}∀a/T , which is

a toric variety in each phase. It will be more convenient for us to express the
toric variety as an algebraic quotient,
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Xr =
C

n −Δr

TC

,

with the complexified torus TC = (C×)k. Here, the deleted set Δr ⊂ C
n is the

set of points whose TC-orbits do not pass through {
∑n

i=1 Q
a
i |xi|2 = ra}∀a. Δr

is constant within each phase and jumps at phase boundaries, so that every
phase, I, II, . . ., is equipped with its particular deleted set, ΔI ,ΔII , . . ..

In order to illustrate how the deleted sets and thus the toric varieties
depend on the Kähler parameters, let us consider the following model with
gauge group T = U(1):

fields x y z p
U(1) 1 1 1 −3

Studying the potential U readily shows that the deleted sets are

Δ+ = {x = y = z = 0} for r > 0 ,

Δ− = {p = 0} for r < 0 .
(4)

Thus, the toric varieties, X+ resp. X−, are the line bundle O(−3) over CP
2

for positive r and the orbifold C
3/Z3 (set p = 1) for negative r.

The classical theory is divided into disconnected domains by the phase
boundaries. In the quantum theory, this picture is completely altered by the
theta angles [5]: The singular locus is a complex hypersurface S in the space
(C×)k of complexified parameters ta = ra − iθa. The Kähler moduli space of
the low energy theory is thus the complement

MK = (C×)k\S ,

which is connected. Let us have a closer look at S in one-parameter models.
The singularity occurs when there is a non-compact σ branch and that is where
the quantum effective potential vanishes. For large values of σ the second term
in (1) gives masses to the fields xi and we can integrate out the latter. This
results in the effective potential [5] (under condition (3)):

Ueff =
e2

2
|reff − iθmin |2 for |σ| � e. (5)

Here, reff = r +
∑

i Qi log |Qi| and θ2
min = minq∈Z(θ + Sπ + 2πq)2. The

constant S is the sum of positive charges Qi. Thus, the singular locus S is
at r = −

∑
i Qi log |Qi| and θ = Sπ mod 2π. The moduli space MK for a

one-parameter model is depicted in Fig. 1.

Fig. 1. The moduli space of a one-parameter model. In our example we have rsing =
3 log 3 and θsing = 3π mod 2π
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2 D-branes in the Linear Sigma Model

Studying D-branes in a two-dimensional quantum field theory means that we
have to put the model on a world sheet Σ with boundary. In this section it
will suffice to consider the half-plane with coordinates (x0, x1) ∈ R× (−∞, 0).
We will mainly discuss one-parameter models.

The presence of a boundary has two consequences: First, at least half of
the N = (2, 2) supersymmetry algebra is broken — we consider boundary
conditions that preserve the N =2B subalgebra, cf. [10]. Second, we have to
introduce some additional boundary interactions in order to ensure invariance
of the action S under N =2B supersymmetry. There is some freedom in doing
so, which comes from a part in the boundary action, let us call it Sbdry, which
is supersymmetric by itself. It will suffice to concentrate on this part for the
present purposes.

The term Sbdry in fact gives rise to a Wilson line with connection A, i.e.,
we may write Sbdry = −

∫
∂Σ

A0dx
0. The simplest choice for a N =2B invariant

connection is
A0 = q

[
v0 − Re(σ)

]
, (6)

which yields a gauge covariant Wilson line provided q is an integral charge.
Let us refer to the D-brane defined through (6) as Wilson line brane

W(q) .

Note that the theta angle term (2) is not topological on a bounded world
sheet with B-type boundary conditions [11]. This has the consequence that θ
is not an angular variable anymore. Indeed, we can combine the theta angle
and the charge q in a single boundary term

Sbdry = −
∫

∂Σ

(
θ

2π
+ q

)
[
v0 − Re(σ)

]
. (7)

The action is then invariant under combined shifts θ → θ− 2π and q → q+1.
We may think of the Wilson line brane W(q) as one-dimensional vector

space V, the Chan–Paton space, which carries a representation ρ(eiϕ) = eiqϕ

of the gauge group T . In a similar way, we assign to V representations of
the two global symmetries of the action functional S: an integral R-degree
j coming from the representation R(λ) = λj of the vector R-symmetry and
a Z2-degree σ = (−1)F from the fermion number symmetry. The latter dis-
tinguishes branes and antibranes. We choose the R-degree so that it reduces
modulo 2 to the Z2 grading, σ = R(eiπ). Therefore, the Wilson line brane is
completely characterized by the Z-valued (or more generally Z

k-valued) gauge
charge q and the Z-degree j from the R-symmetry.

Given the basic B-type D-branes of the gauged linear sigma model we
may form bound states, i.e. Z-graded direct sums of Wilson line branes W =
⊕j∈ZWj with interaction terms in Sbdry, where the direct summand of R-
degree j is
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Wj = ⊕nj

i=1W(qij) .

We assume the finiteness condition
∑

j∈Z
nj < ∞, i.e. we only consider bound

states of finitely many Wilson line branes. Then the data for a general D-brane
B is a complex,

C(B) : . . .
dj−1

−→ Wj−1 dj

−→ Wj dj+1

−→ Wj+1 dj+2

−→ . . . ,

where the maps dj are holomorphic in the fields xi and compatible with the
gauge charge assignment qij . Such a data determines the boundary interaction
of the form

A0 =
k∑

a=1

ρ∗
[
v0 − Re(σ)

]
+

1
2
{Q,Q†} + fermions . (8)

Here, ρ∗(·): W → W is the infinitesimal form of the gauge representation ρ
and Q: W → W is the collection of the maps dj . By the fact that the dj ’s
form a complex, dj+1 ◦ dj = 0, we have

Q2 = 0 , (9)

the condition for N = 2B supersymmetry of A0. The compatibility of dj with
the gauge charge assignment ensures the gauge invariance condition

ρ(eiϕ)−1 Q(eiQ1ϕx1, . . . , e
iQnϕxn) ρ(eiϕ) = Q(x1, . . . , xn) .

Q has R-degree 1 as dj ’s do

R(λ)Q(x1, . . . , xn)R(λ)−1 = λQ(x1, . . . , xn) ,

which ensures invariance of the interaction A0 under R-symmetry. We denote
the set of D-branes in the gauged linear sigma model by D(Cn, T ).

So far we have only considered the supersymmetric action including new
terms at the boundary of the worldsheet. It remains to specify the N = 2B

supersymmetric boundary conditions on the bulk fields. They must ensure
that we acquire a well-defined action for the non-linear sigma model on the
toric variety at low energies. In fact, supersymmetry requires us to pick a (real)
one-dimensional subspace in the σ plane and the particular choice of the latter
has severe influences on the low-energy theory. As it turns out, the following
conditions on the bosons together with their supersymmetry transforms lead
to a well-defined low-energy theory for a Wilson line brane W(q):

∂1xi = 0 ,

v1 = Im(σ) = 0 , (10)
∂1(v0 − Re(σ)) = 0 ,

v01 = −e2(θ + 2πq) .
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The last condition is the Gauss law constraint for the gauge field strength
v01 = ∂0v1 − ∂1v0. We will comment on the consequences of the boundary
conditions (10) in the course of the subsequent discussions.

Now that we have fully specified the gauged linear sigma model in the
presence of a boundary, let us see how D-branes in D(Cn, T ) descend to D-
branes on the toric varieties XI ,XII , . . . at low energies.

3 D-Branes on Toric Varieties

Assume that we are deep inside a Kähler cone. Since the gauge coupling e
sets the energy scale of the problem, the low-energy limit is equivalent to the
e → ∞ limit. Consequently, the kinetic term for the gauge multiplet vanishes
and the gauge field v as well as the scalars, Re(σ) and Im(σ), acquire algebraic
equations of motion.

As an example consider v0. After the e → ∞ limit, it enters the action S
as follows:

1
2π

∫

Σ

∑

i

Q2
i |xi|2

(

v2
0 −

∑
j iQj(x̄j∂0xj − ∂0x̄jxj)

∑
i Q

2
i |xi|2

v0 + ferm.

)

−
∫

∂Σ

(
θ

2π
+ q

)

v0.

(11)
The first part comes from the kinetic term for the fields xi. The last is due to
the boundary term (7) for a Wilson line brane W(q). Completing the square
has the effect, familiar from the case without boundary, that the gauge field v
becomes the pull-back, x∗A, of the connection on the holomorphic line bundle
O(1) over Xr. In particular, the Wilson line (6) then corresponds to the line
bundle O(q) with its divisor class specified by q.3

The last term in (11) causes some problem when completing the square, it
gives rise to a singularity [δ∂Σ(x1)]2, where δ∂Σ(x1) denotes the delta distri-
bution localized at the boundary. Fortunately, when we integrate out Re(σ),
another singularity with opposite sign precisely cancels the one from v0. This
cancelation is in fact a consequence of the boundary conditions (10). For the
imaginary part of σ the conditions (10) ensure that such problems with sin-
gularities do not occur in the first place.

In summary, a D-brane B of the gauged linear sigma model is mapped
to a D-brane B on the toric variety Xr that corresponds to a complex of
holomorphic vector bundles,

C(B) : . . .
dj−1

−→ Ej−1 dj

−→ Ej dj+1

−→ Ej+1 dj+2

−→ . . . ,

3 If the toric variety Xr has orbifold singularities, the gauge charge q turns into
the data for the representation of the discrete orbifold group on the Chan–Paton
space. In order to stick to a uniform terminology we, somewhat loosely, refer to
D-branes on orbifolds as ‘line bundles’ or ‘vector bundles’ as well.
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with Ej = ⊕nj

i=1O(qij). All we have to do is to apply the map

W(q) 
→ O(q)

on all component branes. The Neumann boundary condition, ∂1xi = 0, in
(10) ensures that all the entries in the complex correspond to space-filling
D-branes.

3.1 Trivial D-branes and D-isomorphisms

We are interested in the low-energy behaviour of the bulk and the boundary
theory. Just as in the bulk, the boundary theory reduces at low energies to
the bottom of the boundary potential. In fact, in order to find a non-empty
superconformal interaction in the deep infra-red limit, we need a zero of the
potential. Note that the matrix {Q,Q†} in (8) serves as a boundary potential
for the D-brane B. If {Q,Q†} is everywhere positive on Xr there is no chance
of obtaining a vanishing potential and complete brane–antibrane annihilation
will take place [12], thus such a D-brane is empty at low energies.

The simplest example is the trivial brane antibrane annihilation

O(q) 1−→ O(q) with {Q,Q†} = idV .

Another class of examples which play a crucial role in our study are D-branes
such that {Q,Q†} has zero eigenvalues only in the deleted set Δr. Since the
latter is not part of the vacuum variety, such a D-brane will be infra-red
empty on Xr. The fact that the deleted sets differ in the low-energy phases
then implies that the set of trivial D-branes in D(Cn, T ) changes across phase
boundaries.

There is a simple (sufficient) condition for two D-branes to flow to the
same infra-red fixed point. In order to formulate it, let us borrow the notion
of a quasi-isomorphism from the theory of derived categories. Suppose there
are two D-branes, B1 and B2, and a chain map ϕ = ϕ(x1, . . . , xn) from C(B1)
to C(B2), i.e. it satiesfies Q2ϕ−ϕQ1 = 0. We define the bound state D-brane
BC(ϕ) (known as the cone) by Ej

C(ϕ) = Ej+1
1 ⊕ Ej

2 and

QC(ϕ) =
(
−Q1 0
ϕ Q2

)

.

Then the chain map ϕ is called a quasi-isomorphism, if BC(ϕ) is trivial over
Xr, i.e. the matrix {QC(ϕ), Q

†
C(ϕ)} is invertible. Two D-branes, B1 and B2,

that are related by a chain of quasi-isomorphisms are called quasi-isomorphic.
This definition of a quasi-isomorphism ϕ is equivalent to the one commonly
used in the literature, which is based on the propetry of ϕ at the cohomology
level. Now we can state the condition: two D-branes in D(Cn, T ) flow to the
same D-brane at low energies if they are quasi-isomorphic. (The converse is
not true.)
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This follows from the following non-trivial fact: two quasi-isomorphic D-
branes are related through a combination of (i) brane–antibrane annihilations,
as described above and (ii) certain deformations of the connection A, called
D-term deformations, that do not change the low-energy behaviour. Since we
are not dealing with the derived category, but rather with boundary inter-
actions in a quantum field theory, we prefer to refer to the combination of
brane–antibrane annihilations and D-term deformations as D-isomorphisms.
In the chiral sector of the theory the two notions, quasi-isomorphism and
D-isomorphism, are interchangeable.

We summarize our findings by identifying the set of low-energy D-branes
with D-branes in D(Cn, T ) up to D-isomorphisms and we refer to this set by
D(Xr). Let us denote the map from linear sigma model D-branes to geometric
D-branes by

πr : D(Cn, T ) −→ D(Xr) .

Then, taking into account the phase structure of the Kähler moduli space, we
obtain a pyramid of maps:

πI

πII πIII

πIV

D(XI)

D(XII) D(XIII)

D(XIV)

Every Kähler cone comes with its own deleted set, thus inducing specific D-
isomorphisms in D(XI),D(XII), . . ..

Let us illustrate some D-isomorphisms in our example. Recall the deleted
sets, Δ+ = {x= y = z = 0} and Δ− = {p= 0}. Let us consider the D-brane,
B+, given by the complex4

C(B+) : W(−1)

(
x
y
z

)

−−−−−→ W(0)⊕3

(
0 z −y

−z 0 x
y−x 0

)

−−−−−→ W(1)⊕3
(x,y,z)

−−−−−→ W(2) . (12)

The R-degree 0 part of the complex is underlined. The potential term in the
boundary interaction is

{Q+, Q
†
+} =

(
|x|2 + |y|2 + |z|2

)
· idV+ , (13)

4 In the following we use the short-hand notation W(−1)
X−→ W(0)⊕3 X−→

W(1)⊕3 X−→ W(2) for Koszul-like complexes (12).
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In the low-energy theory of the positive volume phase, r � 0, this bound-
ary potential is strictly non-vanishing, since x = y = z = 0 is deleted. As a
consequence complete brane–antibrane annihilation takes place, π+(B+) ∼= 0,
where 0 denotes the trivial D-brane. On the other hand, we may view B+ as
a result of binding two D-branes, say

C(B1) : W(−1) X−→ W(0)⊕3 X−→ W(1)⊕3 and C(B2) = W(2) .

The map that binds them is the right-most one in (12). Then, invertibility
of {Q+, Q

†
+} tells us that B1 and B2 determine D-isomorphic low-energy

D-branes in D(X+):
π+(B1) ∼= π+(B2) .

Let us next study these branes in the negative volume phase r � 0, where the
low-energy theory is the free orbifold C

3/Z3. In this phase the fields x, y, z are
allowed to vanish at the same time, so that the boundary potential {Q+, Q

†
+}

is not everywhere invertible anymore. Consequently, the D-brane B+ localizes
at the orbifold fixed point p = {x=y= z=0} and becomes the fractional D-
brane, Op(2). The gauge charge is now a Z3 representation label. We also find
that π−(B1) and π−(B2) are not D-isomorphic in D(X−).

A complementary example is provided by the complex

C(B−) : W(q+3)
p−→ W(q) ,

for some q ∈ Z. The associated boundary potential is {Q−, Q
†
−} = |p|2 · idV− .

In the orbifold phase the latter is positive everywhere and hence the image
π−(B−) is trivial in the low-energy limit. This can likewise be interpreted as
the D-isomorphism,

π−(W(q+3)) ∼= π−(W(q)) , (14)

in D(X−), which reflects the breaking of the gauge group T = U(1) to the
discrete subgroup Z3.

At large volume, r � 0, we find that π+(B−) is D-isomorphic to OE(q),
a line bundle supported on the exceptional divisor E ∼= CP

2 (or more accu-
rately the structure sheaf on E tensored with O(q)). Of course, the D-branes
π+(W(q+3)) = O(q+3) and π+(W(q)) = O(q) are not D-isomorphic in
D(X+).

4 Changing the Phase — The Grade Restriction Rule

We now discuss the key result of our work. We relate D-branes on toric vari-
eties, say X+ and X−, of two adjacent phases.

Let us pick an arbitrary Wilson line brane W(q) ∈ D(Cn, T ) and a path
from r � 0 to r � 0 as depicted in Fig. 2. Naively, when we follow the path



B-Type D-Branes in Toric Calabi–Yau Varieties 37

π−π

w0w−1

θ−5π 3π−3π

w1

r

w−2

Fig. 2. A path in the moduli space for a one-parameter model with S odd. The
window w0 determines the set of grade restricted branes T w0

we start with the D-brane O(q) ∈ D(X+) and end up with O(q) ∈ D(X−).
But we know already from the discussion in the previous section that this
cannot be true in general. We have to be careful when we come close to the
phase boundary at r = −

∑
i Qi log |Qi|, where the scalar field σ could become

large and give rise to a singularity.
In order to observe possible singularities we have to redo the computation

of the effective potential (5) at large σ in the presence of a boundary. To this
end we formulate the model on a strip, so that the finite width L enables us
to compare the energies from the bulk and the boundary of the interval [0, L].
We work in the NS sector in which the left and the right boundaries preserve
the opposite N = 2B supersymmetries.

We first notice that the boundary interaction (7) includes the term (θ/2π+
q)Re(σ) which plays the role of the scalar potential term in the large σ region.
(There is no such term for Im(σ) because of the boundary condition (10).) In
the NS sector with a constant σ, the contributions from the left and the right
boundaries add up, yielding

Vclassical = L
e2

2
r2 − 2

(
θ

2π
+ q

)

Re(σ)

as the classical potential. We find a problem here: this potential for Re(σ) is
unbounded from below. However, in order to see what really happens at large
values of σ we have to take into account quantum corrections from integrating
out the heavy fields xi, just as in the bulk. The effective potential turns out
to be,

Veff = L
e2

2
|reff − iθeff |2 + 2

[

−
(

θ

2π
+ q

)

Re(σ) +
S

2
|Re(σ)|

]

, (15)

where θeff = θ − sgn(Re(σ))Sπ + 2πq and S =
∑

Qi>0 Qi.
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Since the bulk part is constant and the boundary part is linear, the latter
will always dominate for large enough |Re(σ)|. The problem of an unbounded
potential could be resolved by the quantum correction S|Re(σ)| in Veff . In-
deed, the boundary potential is bounded from below for Wilson line branes
W(q) that satisfy

− S

2
<

θ

2π
+ q <

S

2
. (16)

We call this condition the grade restriction rule.
The grade restrition rule (16) provides us with a simple condition on D-

branes in D(Cn, T ), which can safely be transported along a path from large
to small r. For a given window w between two neighboring singular points at
θ = Sπ mod 2π, as shown in Fig. 2, we define the set of charges

Nw = {q ∈ Z | ∀θ ∈ w : −Sπ < θ + 2πq < Sπ} .

We call a D-branes B grade restricted with respect to the window w if all its
Wilson line components W(q) carry charges q ∈ Nw. Let us denote the set of
grade restricted D-branes by T w ⊂ D(Cn, T ).

4.1 Transport of D-Branes

We are interested in transporting D-branes from one phase to another through
a given window at the phase boundary. Inside either phase, we are free to
use the D-isomorphisms to replace the representatives in D(Cn, T ). When we
cross the phase boundary, we must use the one obeying the grade restric-
tion rule. In this way we can transport D-branes unambiguously. Here is the
procedure.

Start with an arbitrary D-brane B ∈ D(X+) at r � 0 and choose a
convenient lift B ∈ D(Cn, T ), so that π+(B) ∼= B. One may try to find a
D-brane, which is D-isomorphic to B and, at the same time, is an element of
the subset T w. This is indeed always possible, i.e. we can lift any D-brane in
D(X+) to a D-brane in the grade restricted set T w. Let us denote the lifting
map by ωw

+,− : D(X+) → T w. In order for ωw
+,− to be a well-defined map

we have to check whether the lift to T w is unique in an appropriate sense.
As it turns out this is ensured by the fact that there are no D-isomorphisms
between grade restricted D-branes. We will sketch the construction of ωw

+,−
in our example below. From there the generalization to arbitrary models with
T = U(1) will be clear.

Once we have lifted a D-brane from D(X+) to a grade restricted one, we
can transport it through a window w to r � 0 and project it down to D(X−)
via the map π−. For the path in opposite direction this works similarly and we
can subsume the transport of low-energy D-branes between adjacent phases
in the following hat diagram:



B-Type D-Branes in Toric Calabi–Yau Varieties 39

π− π+

ω−,+
w ω+,−

w

D(X−) D(X+) (17)

This diagram defines the composite maps

Fw
−,+ : D(X−)

ωw
−,+−→ T w π+−→ D(X+),

Fw
+,− : D(X+)

ωw
+,−−→ T w π−−→ D(X−),

(18)

which, by the uniqueness of the lifts to T w, are inverses of each other:

Fw
−,+ ◦ Fw

+,−
∼= idD(X+), Fw

+,− ◦ Fw
−,+

∼= idD(X−).

In our example the singular locus S of the Kähler moduli space was at θ ∈
3π + 2πZ and r = 3 log 3. Let us choose the window w = {−π < θ < π}.
The corresponding grade restriction rule gives Nw = {−1, 0, 1} and hence the
D-branes in T w are made of

W(−1), W(0), W(1).

We start at r � 0 with the holomorphic line bundle O(2) over X+. The most
naive lift to the linear sigma model is the D-brane C(B2) = W(2); but, as we
have seen previously, the D-brane

C(B1) : W(−1) X−→ W(0)⊕3 X−→ W(1)⊕3

also satisfies π+(B1) ∼= O(2). In fact, there are infinitely many D-branes
B with π+(B) ∼= O(2). However, among those the D-brane B1 is special
in that it is an object in the grade restricted subset T w. Thus, B1 is the
right representative to cross the phase boundary through the window w. After
arriving at the orbifold phase, r � 0, we apply the projection π− to B1 to
obtain the low-energy D-brane in D(X−):

O(−1) X−→ O(0)⊕3 X−→ O(1)⊕3
.

This is the image of O(2) ∈ D(X+) under the transportation Fw
+,− through

the window w.
We next start at r � 0 with the Z3-equivariant line bundle O(2). Again

this can be lifted into infinitely many D-branes W(2+3n), n ∈ Z, but only one
of them, W(−1), is in the grade restriction range. Thus, the transportation
of O(2) ∈ D(X−) through the window w yields O(−1) ∈ D(X+).
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Finally, let us consider the fractional D-brane Op(2) ∈ D(X−). Its naive
lift is the D-brane B+ given in (12). However, the rightmost entry, W(2), is
not in the grade restriction range. We can replace it by

W(−1) X−→ W(0)⊕3 X−→ W(1)⊕3 pX−→ W(−1)

using the D-isomorphism relation O(2) ∼= O(−1) that comes from W(2)
p−→

W(−1). This D-brane can be transported safely to r � 0 through the window

w and we obtain the complex O(−1) X−→ O(0)⊕3 X−→ O(1)⊕3 pX−→ O(−1).

Another D-isomorphism tells us that this D-brane is O(2)
p−→ O(−1). The

fractional D-brane Op(2) of the orbifold phase is, therefore, mapped by Fw
−,+

to the line bundle OE(−1), which is compactly supported on the exceptional
divisor E = {p = 0} ∼= CP

2 in X+.
From our examples we see that the key point is to find, in the phase of

the starting point, the lift of a given brane B to the grade restricted collection
T w. In order to obtain this particular D-brane, we start with a convenient lift
B ∈ D(Cn, T ), so that π−(B) ∼= B. Then the complex C(B) can always be
changed into a complex made of grade restricted Wilson line branes without
changing the D-isomorphism class in the low-energy theory. For r � 0 one
can do so using the D-brane associated to the deleted set Δ+:

W(q − 3) X−→ W(q − 2)⊕3 X−→ W(q − 1)⊕3 X−→ W(q).

It is a trivial D-brane in the low-energy theory and can be used to eliminate
a Wilson line component W(q), whose charge is above the grade restriction
range Nw, in favour of component branes W(q−3),W(q−2),W(q−1), i.e. we
can decrease the charges. Likewise, we may use this trivial D-brane to increase
charges, which lie below the grade restriction range. Applying this procedure
iteratively allows us to bring any D-brane B into the grade restriction range.
The trivial complex has just the right length in the gauge charges, so that one
can make sure that the process of decreasing or increasing the charges does
not overshoot. Also, the trivial D-brane is too long to give rise to non-trivial
D-isomorphisms within the grade restricted set T w, thus making the grade
restricted D-brane unique up to trivial branes of the form W(q) 1→ W(q). In
the phase r � 0 a similar rôle is played by the complex associated with the
deleted set Δ−:

W(q)
p−→ W(q − 3).

4.2 Some Remarks on Multi-parameter Models

In order to generalize our result to models with higher-rank gauge group, let
us recall that at the phase boundary between two phases, say Phase I and
II, there is a Coulomb branch where a U(1) subgroup of the gauge group is
unbroken. We denote it U(1)I,II . It is this unbroken subgroup that plays the
rôle of the U(1) gauge group in the one-parameter model.
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Nearly everything that we said for one-parameter models carries over to
the multi-parameter case. The grade restriction rule (16) applies only to the
charges with respect to the unbroken subgroup U(1)I,II and is, therefore,
more appropriately called a band restriction rule. If we choose U(1)I,II to be
at the first component of the gauge group T ∼= U(1)k, the band of admissible
charges for a given window w is given by

Nw = {(q1, . . . , qk) ∈ Z
k | ∀θ1 ∈ w : −S1π < θ1 + 2πq1 < S1π} ,

where S1 is the sum over all positive Q1
i ’s. The subset T w ⊂ D(Cn, T ) is now

generated from Wilson line branes W(q1, . . . , qk) with charges in Nw.
When we transport a low-energy D-brane from one phase to another, we

have to band restrict using D-isomorphisms, just as in the one-parameter
case. There is one difference form the k = 1 case: there are non-trivial D-
isomorphisms between branes in T w and the lifting maps ωw

∗,∗∗ are not unique.
However, such D-isomorphisms are common to both phases and are projected
out under the maps π∗. The key to this statement is the relation of the deleted
sets

ΔI = Δ+ ∪ (ΔI ∩ΔII), ΔII = Δ− ∪ (ΔI ∩ΔII),

where Δ+ (resp. Δ−) is the common zeroes of the fields xi with positive
(resp. negative) charge with respect to U(1)I,II , Q1

i > 0 (resp. Q1
i < 0). The

parts Δ± are relevant for the band restriction rule and the part ΔI ∩ΔII is
responsible for the common D-isomorphism relations.

Thus, we again have maps

Fw
I,II : D(XI)

ωw
I,II−→ T w πII−→ D(XII),

Fw
II,I : D(XII)

ωw
II,I−→ T w πI−→ D(XI),

which are inverses of each other. An immediate consequence of this result is
the one-to-one correspondence of the sets, D(Xr), of D-isomorphic D-branes
in all the Kähler cones.

5 Some Relations to Earlier Work

Let us briefly comment on relations of our results to the literature.

5.1 McKay Correspondence

Consider a gauged linear sigma model, which reduces in a particular phase
to an orbifold Xorb

∼= C
n/Γ , where Γ is a discrete subgroup of the gauge

group T and is, therefore, always abelian. The representation ρ of the gauge
group on the Chan–Paton space reduces to a representation of the orbifold
group Γ , so that the low-energy D-branes in this phase are given by complexes
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of Γ -equivariant vector bundles on C
n, D(Xorb) ∼= DΓ (Cn). Other phases in

such a model are partial or complete crepant resolutions, Xres, of the orbifold
singularity.

The maps Fw
+,− of the previous subsection define a one-to-one correspon-

dence, Φ, between D-isomorphism classes of D-branes on Xorb and any of its
resolutions Xres, i.e.

DΓ (Cn) Φ−→ D(Xres) .

In the chiral sector of the theory this reduces to McKay correspondence:

Given a finite group Γ ⊂ SL(n,C) and a crepant resolution, Xres,
of the quotient C

n/Γ , there exists an equivalence of derived categories,
DΓ (Cn)

∼=−→ D(Xres).

For abelian finite groups and arbitrary n, this was first proven as a special
case in [8]. For n ≤ 3 and non-abelian finite groups, it was shown in [6].

5.2 Flop Transition

Let us discuss the flop transition of the resolved conifold. It is realized by the
following model:

fields x y u v
U(1) + 1 +1 −1 −1

The flop is realized in terms of the linear sigma model coordinates in the
following way:

X− =

⎡

⎣
CP

1
[u:v]

↑
O(−1)⊕2

x,y

⎤

⎦ flop←−−→ X+ =

⎡

⎣
O(−1)⊕2

u,v

↓
CP

1
[x:y]

⎤

⎦

The trivial D-branes are

K+ : W(0)

(
y

−x

)

−−−−→ W(1)⊕2
(x,y)

−−−−→ W(2) for r � 0 ,

K− : W(2)

(
v

−u

)

−−−−→ W(1)⊕2
(u,v)

−−−−→ W(0) for r � 0 ,

and shifts thereof. Note that S = 2. At the phase boundary we choose the
window w = {−2π < θ < 0}, so that

Nw = {0, 1} .

A particularly interesting D-brane in this context, say at r � 0, is the D0-
brane, Op, located at p = {u = v = P = 0}, where P = αx + βy. The
parameters [α : β] ∈ CP

1 parametrize the location of the D0-brane. The most
naive lift to the linear sigma model is the Koszul complex
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W(1)

(
p
u
v

)

−−−−→
W(2)
⊕

W(0)⊕2

(
−v 0 p

u−p 0
0 v−u

)

−−−−−−−→
W(1)⊕2

⊕
W(−1)

(u,v,p)
−−−−→ W(0) .

Clearly, W(−1) and W(2) have to be eliminated using the complexes K+ resp.
K+(−1). One can check that the grade restricted representative in the linear
sigma model is given by the complex

C(Bp) : W(0)

(
P

uQ
vQ

)

−−−−→
W(1)
⊕

W(0)⊕2

(
−vQ 0 P

uQ −P 0
0 Qv −Qu

)

−−−−−−−→
W(1)⊕2

⊕
W(0)

(Qu,Qv,P )
−−−−→ W(1) ,

where Q is a linear combination of x and y, so that [P : Q] provide new
coorindates on CP

1
[x:y].

The D-brane Bp can now be transported through the window w to small
r and projected down to D(X−) via π−. There, one might suspect that there
exist D-isomorphisms in order to eliminate brane–antibrane pairs, so that
π−(Bp) can be expressed in terms of compactly supported D-branes on E− =
CP

1
[u:v]. This is, however, not possible. The best we can say about π−(Bp)

is that as a complex of coherent sheaves its cohomology is H−1(π−(Bp)) ∼=
OE−(0) and H0(π−(Bp)) ∼= OE−(1), which is indeed compactly supported.
In fact, the D-brane π−(Bp) is an example for perverse point sheaves as they
were discussed in [7] and later in [13]. It has the same moduli space, namely
CP

1, and the same charges as a D0-brane on X−, but it is not D-isomorphic
to a D0-brane.
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Abstract. The topological string partition function Z(λ, t, t̄) = exp(λ2g−2Fg(t, t̄))
is calculated on a compact Calabi–Yau M . The Fg(t, t̄) fulfil the holomorphic
anomaly equations, which imply that Ψ = Z transforms as a wave function on the
symplectic space H3(M, Z). This defines it everywhere in the moduli space M(M)
along with preferred local coordinates. Modular properties of the sections Fg as well
as local constraints from the 4d effective action allow us to fix Z to a large extent.
Currently with a newly found gap condition at the conifold, regularity at the orbifold
and the most naive bounds from Castelnuovo’s theory, we can provide the boundary
data, which specify Z, e.g. up to genus 51 for the quintic.

1 Outline

Coupling topological matter to topological gravity is a key problem in string
theory. Conceptually most relevant is the topological matter sector of the
critical string as it arises, e.g. in Calabi–Yau compactifications. Topological
string theory on non-compact Calabi–Yau manifolds such as O(−3) → P

2 is
essentially solved by either localization – [1] or large N-techniques [2] and has
intriguing connections to Chern–Simons theory [3], open–closed string dual-
ity [4], matrix models [5], integrable hierarchies of non-critical string theory [6]
and 2d Yang–Mills theory [7].

However, while local Calabi–Yau manifolds are suitable to study gauge
theories and more exotic field theories in 4d and specific couplings to gravity,
none of the techniques above extends to compact Calabi–Yau spaces, which
are relevant for important questions in 4d quantum gravity concerning, e.g. the
properties of 4d black holes [8] and the wave function in mini superspace [9].

Moreover, while the genus dependence is encoded in the Chern–Simons
and matrix model approaches in a superior fashion by the 1/N2-expansion,
the moduli dependence on the parameter t is reconstructed locally and in
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a holomorphic limit, typically by sums over partitions. This yields an algo-
rithm, which grows exponentially in the world–sheet degree or the space–time
instanton number.

As the total Fg(t, t̄) are modular invariant sections over the moduli space
M(M), they must be generated by a ring of almost holomorphic modular
forms. This solves the dependence on the moduli in the most effective way.
In the following we will show that space–time modularity, the holomorphic
anomaly equations of Bershadsky, Cecotti, Ooguri and Vafa (BCOV), as well
as boundary conditions at various boundary components of the moduli space,
solve the theory very efficiently.

For compact (and non-compact) Calabi–Yau spaces mirror symmetry is
proven at genus zero. The modular properties that we need are also estab-
lished at genus zero. Moreover it has been argued recently that the holomor-
phic anomaly recursions follow from categorical mirror symmetry [10, 11]. To
establish mirror symmetry at higher genus, one needs merely to prove that
the same boundary data fix the Fg(t, t̄) in the A- and the B-model.

1.1 Extending the Seiberg–Witten Approach to Gravity

Seiberg–Witten reconstructed the non-perturbative N=2 gauge coupling from
meromorphic sections over M(M) using their modular properties and certain
local data from the effective action at singular divisors of M(M). In [12] we
reconsidered the problem of topological string on local Calabi–Yau from the
modular point of view and found that the singular behaviour of the gravita-
tional couplings is restrictive enough to reconstruct them globally. This can be
viewed as the most straightforward extension of the Seiberg–Witten approach
to gravitational couplings.

Note that the problem of instanton counting in these cases is solved either
by geometric engineering, one of the techniques mentioned above, or more
directly by the localization techniques in the moduli space of gauge theory
instantons by Nekrasov, Nakajima et al. It is nevertheless instructive to out-
line the general idea in this simple setting.3 We focused on the N=2 SU(2)
Seiberg–Witten case, but the features hold for any local Calabi–Yau whose
mirror is an elliptic curve with a meromorphic differential [13, 14]4 and are as
follows

• The genus g topological string partition functions are given by

F (g)(τ, τ̄) = ξ2g−2

3(g−1)∑

k=0

Êk
2 (τ, τ̄)c(g)

k (τ) . (1)

3 Maybe the simplest example of the relation between modularity and the holo-
morphic anomaly equations is provided by Hurwitz theory on elliptic curves [15].

4 With fairly obvious generalizations for the cases where the mirror is a higher genus
curve. In this case the traditional modular forms of subgroups Γ of Γ0 := SL(2, Z)
have to be replaced by Siegel modular forms of subgroups of Sp(2g, Z) [14].
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Here Ê2(τ, τ̄) := E2(τ)+6i/π(τ̄ − τ) is the modular invariant anholomor-
phic extension of the second Eisenstein series E2(τ) and the holomorphic
‘Yukawa coupling’ ξ := C

(0)
ttt = ∂τ/∂t is an object of weight −3 under the

modular Γ ∈ Γ0 = SL(2,Z). For example for pure N = 2 SU(2) gauge
theory Γ = Γ (2) [16]. Modular invariance implies then that c

(g)
k (τ) are

modular forms of Γ of weight 6(g − 1) − 2k.
• The simple anti-holomorphic dependence of (1) implies that the only part

in F (g)(τ, τ̄) not fixed by the recursive anomaly equations is the weight
6(g − 1) holomorphic forms c

(k)
0 (τ), which are finitely generated as a

weighted polynomial c(g)
0 (τ) = p6(g−2)(k1, . . . , km) in the holomorphic gen-

erators Gk1 , . . . , Gkm
of forms of Γ .

• The finite data needed to fix the coefficients in p6(g−2)(k1, . . . , km) are pro-
vided in part by the specific leading behaviour of the F (g) at the conifold
divisor

F
(g)
conifold =

(−1)g−1B2g

2g(2g − 2)t2g−2
D

+ O(t0D), (2)

in special local coordinates tD. The order of the leading term was estab-
lished in [17], the coefficient of the leading term in [18], and the “gap
condition”, i.e. the vanishing of the following 2g− 3 negative powers in tD
in [12]. This property in particular carries over to the compact case and
we can give indeed a string theoretic explanation of the finding in [12].

• Further conditions are provided by the regularity of the F (g) at orbifold
points in M(M). These conditions unfortunately turn out to be somewhat
weaker in the global case than in the local case.

Similar forms as (1) for the F (g) appear in the context of Hurwitz theory on
elliptic curves [15], of mirror symmetry in K3 fibre limits[19] and on rational
complex surfaces [20, 21]. In the local cases, which have elliptic curves as mir-
ror geometry, we found [12, 13], that the above conditions (over)determine the
unknowns in p6(g−2)(k1, . . . , km) and solve the theory. This holds also for the
gauge theories with matter, which from geometric engineering point of view
correspond to local Calabi–Yau manifolds with several (Kähler) moduli [13].
Using the precise anholomorphic dependence and restrictions from space–time
modularity one can iterate the holomorphic anomaly equation with an algo-
rithm which is exact in the moduli dependence and grows polynomially in
complexity with the genus.

Here we extend this approach further to compact Calabi–Yau spaces and
focus on the class of one Kähler moduli Calabi–Yau spaces M such as the
quintic. More precisely we treat the class of one modulus cases whose mir-
ror W has, parameterized by a suitable single cover variable, a Picard–Fuchs
system with exactly three regular singular points: The point of maximal mon-
odromy, a conifold point, and a point with rational branching. The latter can
be simply a Zd orbifold point. This example is the case for the hypersurfaces
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where the string theory has an exact conformal field theory description at
this point in terms of an orbifold of a tensor product of minimal (2, 2) SCFT
field theories, the so called the Gepner-model. For some complete intersections
there are massless BPS particles at the branch locus, which lead in addition
to logarithmic singularities.

We find a natural family of coordinates in which the conifold expansion as
well as the rational branched logarithmic singularities exhibit the gap condi-
tion (2). Despite the fact that the modular group, in this case a subgroup of
Sp(h3,Z), is poorly understood,5 we will see that the essential feature carry
over to the compact case. Modular properties, the “gap condition”, together
with regularity at the orbifold, the leading behaviour of the Fg at large ra-
dius, and Castelenovo’s Bound determine topological string on one modulus
Calabi–Yau to a large extent.

2 The Topological B-Model

In this section we give a quick summary of the approach of [17, 22] to the
topological B-model, focusing as fast as possible on the key problems that
need to be overcome: namely the problem of integrating the anomaly equation
efficiently and the problem of fixing the boundary conditions.

2.1 The Holomorphic Anomaly Equations

The definition of F (g) is F (g) =
∫
Mg

μg with measure on Mg

μg =
3g−3∏

i=1

dmidm̄ı̄

〈
∏

i,̄ı

∫

Σ

Gzzμ
(i) z
z̄ d2z

∫

Σ

Gz̄z̄μ
(i) z̄
z d2z

〉

. (3)

Here the Beltrami differentials μ(i) z
z̄ dz̄ span H1(Σ,TΣ), the tangent space to

Mg. The construction of the measure μg is strikingly similar to the one for
the bosonic string, once the BRST partner of the energy–momentum tensor is
identified with the superconformal current Gzzdz and the ghost number with
the U(1) charge [23]. 〈〉 is to be evaluated in the internal (2, 2) SCFT, but it
is easy to see that it gets only contributions from the topological (c, c) sector.

The holomorphic anomaly equation reads for g = 1 [22]

∂̄k̄∂mF (1) =
1
2
C̄ij

k̄
C

(0)
mij +

( χ

24
− 1

)
Gk̄m , (4)

where χ is the Euler number of the target space M , and for g > 1 [17]

5 Subgroups of Sp(4, Z) in which the monodromy group of the one-parameter mod-
els live have been recently specified [24].
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∂̄k̄F
(g) =

1
2
C̄ij

k̄

(

DiDjF
(g−1) +

g−1∑

r=1

DiF
(r)DjF

(g−r)

)

. (5)

The right-hand side of the equations comes from the complex codimension
one boundary of the moduli space of the worldsheet Mg, which corresponds
to pinching of handles. The key idea is that ∂̄k̄F

(g) =
∫
Mg

∂̄∂λg, where ∂̄∂ are

derivatives on Mg so that ∂̄k̄F
(g) =

∫
∂Mg

λg. The contribution to the latter
integral is from the codimension one boundary ∂Mg.

The first Eq. (4) can be integrated using special geometry up to a holo-
morphic function [22], which is fixed by the consideration in Sect. 2.2.

The Eq. (5) is solved in BCOV using the fact that due to

D̄īC̄j̄k̄l̄ = D̄j̄C̄ı̄k̄l̄ (6)

one can integrate
C̄j̄k̄l̄ = e−2KD̄īD̄j̄∂̄k̄S (7)

as
Sı̄ = ∂̄ı̄S, Sj

ı̄ = ∂̄ı̄S
j , C̄ij

k̄
= ∂k̄S

ij . (8)

The idea is to write the right-hand side of (5) as a derivative w.r.t. ∂̄k̄. In the
first step one writes

∂̄k̄F
(g) = ∂̄k̄

(
1
2
Sij

(

DiDjF
(g−1) +

g−1∑

r=1

DiF
(r)DjF

(g−r)

))

−1
2
Sij ∂̄k̄

(

DiDjF
(g−1) +

g−1∑

r=1

DiF
(r)DjF

(g−r)

)

.

(9)

With the commutator Rl
ik̄j

= −∂̄k̄Γ
l
ij = [Di, ∂k̄]lj = Gik̄δ

l
j +Gjk̄δ

l
i −C

(0)
ijmC̄ml

k̄

the second term can be rewritten so that the ∂̄k̄ derivative acts in all terms
directly on F (g). Then using (4, 5) with g′ < g one can iterate the procedure,
which produces an equation of the form

∂̄k̄F
(g) = ∂̄k̄Γ

(g)(Sij , Si, S, C
(<g)
i1,...,in

) , (10)

where Γ (g) is a functional of Sij , Si, S and C
(<g)
i1,...,in

. This implies that

F (g) = Γ (g)(Sij , Si, S, C
(<g)
i1,...,in

) + c
(g)
0 (t) , (11)

is a solution. Here c
(g)
0 (t) is the holomorphic ambiguity, which is not fixed

by the recursive procedure. It is holomorphic in t as well as modular invari-
ant. The major conceptual problem of topological string theory on compact
Calabi–Yau is to find the boundary conditions which fix c

(g)
0 (t). Note that the

problem is not well defined without the constraints from modular invariance.
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Using the generalization of the gap condition in Sect. 2.2, the behaviour of
the orbifold singularities in Sect. 3.4 and Castelnuovo’s bound in Sect. 5.2 we
can achieve this goal to a large extent.

Properties of the Γ (g)(Sij , Si, S, C
(<g)
i1,...,in

) are established using the auxil-
iary action

Z =
∫

dxdφ exp(Y + W̃ ) (12)

where

W̃ (λ, x, φ, t, t̄) =
∞∑

g=0

∞∑

m=0

∞∑

n=0

1
m!n!

C̃
(g)
i1,...,in,φmxi1 . . . xin

φm

=
∞∑

g=0

∞∑

n=0

λ2g−2

n!
C

(g)
i1,...,in

xi1 . . . xin
(1 − φ)2−2g−n

+
(

χ
24 − 1

)
log

(
1

1−φ

)
,

(13)

with C
(g)
i1,...,in

= Di1 . . . Din
F (g) and the “kinetic term” is given by

Y (λ, x, φ; t, t̄) = − 1
2λ2

(Δijx
ixj +2Δiφx

iφ+Δφφφ
2)+

1
2

log
(

detΔ
λ2

)

. (14)

In [17] it was shown that exp(W̃ ) fulfills an equation

∂

∂t̄i
exp(W̃ ) =

[
λ2

2
C̄jk

ı̄

∂2

∂xj∂xk
−Gı̄jx

j ∂

∂φ

]

exp(W̃ ) (15)

that is equivalent to the holomorphic anomaly equations, by checking the
coefficients of the λ powers, and exp(Y ) fulfills

∂

∂t̄ı̄
exp(Y ) =

[

−λ2

2
C̄jk

ı̄

∂2

∂xj∂xk
−Gı̄jx

j ∂

∂φ

]

exp(Y ) (16)

implying that Δij , Δiφ and Δφφ are the inverses to the propagators Kij =
−Sij , Kiφ := −Si and Kφφ := −2S. A saddle point expansion of Z gives

log(Z) =
∞∑

g=2

λ2g−2
[
F (g) − Γ (g)(Sij , Si, S, C

(<g)
i1,...,in

)
]
, (17)

where Γ (g)(Sij , Si, S, C
(<g)
i1,...,in

) is simply the Feynman graph expansion of the

action (12) with the vertices C̃
(g)
i1,...,in,φm and the propagators above. More-

over it can be easily shown that ∂/∂t̄i
Z = 0, which implies to all orders that

F (g) can be written as (11). This establishes the reduction of the whole cal-
culation to the determination of the holomorphic modular invariant sections
c
(g)
0 (t) ∈ L2g−2. However it also reflects the major technical problem in the
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approach of BCOV, namely that the procedure to determine the recursive
anholomorphic part grows exponentially with the genus. It has been observed
in [25] that in concrete cases the terms appearing in the Feynman graph ex-
pansion are not functionally independent. This is a hint for finitely generated
rings of anholomorphic modular forms over M(M). Using the modular con-
straints systematically in each integration step Yamaguchi and Yau developed
a recursive procedure for the quintic whose complexity grows asymptotically
only polynomially, see (53).

Since the B-model is 2d gravity coupled to 2d matter, let us compare the
situation with pure 2d gravity, where the objects of interest are correlation
functions of τdi

= (2di +1)!!c1(Li)di which are forms on Mg constructed from
the descendent fields

Fg(t0, t1, . . .) =
∑

{di}
〈
∏

τdi
〉g

∏

r>0

tnr
r

nr!
. (18)

Here {di} is the set of all non-negative integers and nr := Card(i : di = r).
The linear second order differential equations (15) is the small phase space

analogue of the Virasoro constraints

LnZ = 0, n ≥ −1 (19)

on Z = eF with F =
∑∞

g=0 λ
2g−2Fg the free energy of 2d topological grav-

ity [26]. Indeed the Ln with [Ln, Lm] = (n−m)Ln+m are second order linear
differential operators in the ti. The non-linear KdV Hierarchy, which together
with dilaton and string equation are equivalent to (19) [26] and correspond
in the small phase space of the B-model to the holomorphic anomaly equa-
tions (4, 5). In the A-model approaches to topological string on Calabi–Yau
manifolds, such as relative GW-theory, localization or attempts to solve the
theory via massive (2, 2) models, the descendents are introduced according to
the details of the geometrical construction and then “summed away”.

The combinatorial cumbersome information in the descendent sums is re-
placed in the B-model by the contraints from the modular group, holomorphic-
ity and boundary information from the effective 4d action. As a consequence
of this beautiful interplay between space–time and world–sheet properties one
needs only the small phase space equations (4, 5, 15).

This approach requires the ability to relate various local expansions of F (g)

near the boundary of the moduli space. Sensible local expansions (of terms
in the effective action) are in locally monodromy invariant coordinates. As
explained in [14] these coordinates in various patches are related by symplectic
transformations on the phase space H3(M). The latter extend as metaplectic
transformations to the wave function ψ = Z of the topological string on
the Calabi–Yau [27], which defines the transformation on the F (g). It will
be important for us that the real polarization [14, 28, 29] defines an unique
splitting (11, 54) of local expansions of the F (g) in the anholomorphic modular
part determined by the anomaly equations and the holomorphic modular part
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c
(g)
0 (t). Aspects of the wave functions properties and the various polarizations

have been further discussed in [14, 28, 29].

2.2 Boundary Conditions from Light BPS States

Boundaries in the moduli space M(M) correspond to degenerations of the
manifold M and general properties of the effective action can be inferred from
the physics of the lightest states. More precisely the light states relevant to
the F (g) terms in the N = 2 actions are the Bogomol’nyi-Prasad-Sommerfield
(BPS) states. Let us first discuss the boundary conditions for F (1) at the
singular points in the moduli space.

• At the point of maximal unipotent monodromy in the mirror manifold
W , the Kähler areas, four and six volumes of the original manifold M
are all large. Therefore the lightest string states are the constant maps
Σg → pt ∈ M . For these Kaluza–Klein reduction, i.e. a zero mode analysis
of the A-twisted non-linear σ-model is sufficient to calculate the leading
behaviour6 of F (1) as [22]

F (1) =
ti
24

∫

c2 ∧ Ji + O(e2πit) . (20)

Here 2πi ti = Xi

X0 are the canonical Kähler parameters, c2 is the second
Chern class and Ji is the basis for the Kähler cone dual to two-cycles Ci

defining the ti :=
∫

Ci
Ĵ =

∫
Ci

∑
i tiJi.

• At the conifold divisor in the moduli space M(W ), W develops a nodal sin-
gularity, i.e. a collapsing cycle with S3 topology. As discussed in Sect. 3.5
this corresponds to the vanishing of the total volume of M . The leading
behaviour at this point is universally [30]

F (1) = − 1
12

log(tD) + O(tD) . (21)

This leading behaviour has been physically explained as the effect of inte-
grating out a non-perturbative hypermultiplet, namely the extremal black
hole of [31]. Its mass ∼ tD, see (26), goes to zero at the conifold and it
couples to the U(1) vector in the N = 2 vectormultiplet, whose lowest
component is the modulus tD. The factor 1/12 comes from the gravita-
tional one-loop β-function, which describes the running of the U(1) cou-
pling [32]. A closely-related situation is the one of a shrinking lense space
S/G. As explained in [33] one gets in this case several BPS hyper multi-
plets as the bound states of wrapped D-branes, which modifies the factor
1/12 → |G|/12 in the one loop β-function (21).

• The gravitational β-function argument extends also to non-perturbative
spectra arising at more complicated singularities, e.g. with gauge symme-
try enhancement and adjoint matter [34].

6 The leading of F (0) at this point is similarly calculated and given in (37).
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For the case of the one-parameter families the above boundary information
and the fact is sufficient to fix the holopmorphic ambiguity in F (1).

To learn from the effective action point of view about the higher genus
boundary behaviour, let us recall that the F (g) as in F (λ, t) =

∑∞
g=1 λ

2g−2

F (g)(t) give rise to the following term:

SN=2
1−loop =

∫

d4xR2
+F (λ, t) , (22)

where R+ is the self-dual part of the curvature and we identify λ with
F+, the self-dual part of the graviphoton field strength. As explained in
[35, 36], see [23] for a review, the term is computed by a one-loop inte-
gral in a constant graviphoton background, which depends only on the left
(SO(4) = SU(2)L ⊗ SU(2)R) Lorentz quantum numbers of BPS particles P
in the loop. The calculation is very similar to the normal Schwinger-loop
calculation. The latter computes the one-loop effective action in an U(1)
gauge theory, which comes from integrating out massive particles P coupling
to a constant background U(1) gauge field. For a self-dual background field
F12 = F34 = F it leads to the following one-loop determinant evaluation:

SS
1−loop = log det

(
∇ + m2 + 2e σLF

)

=
∫ ∞

ε

ds
s

Tr(−1)f exp(−sm2) exp(−2seσLF )
4 sin2 (seF/2)

. (23)

Here the (−1)f takes care of the sign of the log of the determinant depending
on whether P is a boson or a fermion and σL is the Cartan element in the
left Lorentz representation of P . To apply this calculation to the N = 2
supergravity case one notes, that the graviphoton field couples to the mass, i.e.
we have to identify e = m. The loop has two R+ insertions and an arbitrary,
(for the closed string action even) number, of graviphoton insertions. It turns
out [36] that the only supersymmetric BPS states with the Lorentz quantum
numbers [(

1
2
,0

)

+ 2(0,0)
]

⊗ R (24)

contribute to the loop. Here R is an arbitrary Lorentz representation of SO(4).
Moreover the two R+ insertions are absorbed by the first factor in the Lorentz
representation (24) and the coupling of the particles in the loop to F+ inser-
tions in the N = 2 evaluation works exactly as in the non-supersymmetric
Schwinger-loop calculation above for P in the representation R.

What are the microscopic BPS states that run in the loop? They are
related to non-perturbative RR states, which are the only charged states in
the Type II compactification. They come from branes wrapping cycles in the
Calabi–Yau and as BPS states their masses are proportional to their central
charge (38). For example, in the large radius in the type IIA string on M , the
mass is determined by integrals of complexified volume forms over even cycles.
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Example the mass of a 2 brane wrapping a holomorphic curve Cβ ∈ H2(M,Z)
is given by

mβ =
1
λ

∫

Cβ∈H2(M,Z)

(iJ + B) =
1
λ

2πit · β =:
1
λ
tβ . (25)

We note that H2(M,Z) plays here the role of the charge lattice. In the type
IIB picture the charge is given by integrals of the normalized holomorphic
(3, 0)-form Ω. In particular the mass of the extremal black hole that vanishes
at the conifold is given by

mBH =
1

λ
∫

AD
Ω

∫

S3
Ω =:

1
λ
tD , (26)

where AD is a suitable non-vanishing cycle at the conifold. It follows from the
discussion in previous paragraph that with the identification e = m and after
a rescaling s → sλ/e in (23), as well as absorbing F into λ, one gets a result
for (22)

F (λ, t) =
∫ ∞

ε

ds
s

Tr(−1)f exp(−st) exp(−2sσLλ)
4 sin2 (sλ/2)

. (27)

Here t is the regularized mass, c.f. (25,26) of the light particles P that are
integrated out, f is their spin in R and σL is the Cartan element in the
representation R.

At the large volume point one can relate the relevant BPS states actually
to bound states of D2 with and infinite tower of D0 branes with quantized
momenta along the M -theory circle. Moreover the left spin content of the
bound state can be related uniquely to the genus of Cβ . This beautiful story
leads, as explained in [35, 36], after summing over the momenta of the D0
states to (105), which together with Castelnuovo’s bound for smooth curves
leads to very detailed and valuable boundary information as explained in
Sect. 5. It is important to note that all states are massive so that there are
no poles in F (g) for g > 1. Hence the leading contribution is regular and can
be extracted from the constant β = 0 contribution in (105) as

lim
t→∞

F
(g)
A-model =

(−1)g−1B2gB2g−2

2g(2g − 2)(2g − 2)!
· χ

2
. (28)

The moduli space of constant maps factors into tow components: the mod-
uli space of the worldsheet curve Σg and the location of the image point,
i.e. M . The measures on the components are λ3g−3 and c3(TM ) respectively,
explaining the above formula.

Let us turn to type IIB compactifications near the conifold. As it was
checked with the β-function in [32] there is precisely one BPS hypermultiplet
with the Lorentz representation of the first factor in (24) becoming massless at
the conifold. In this case the Schwinger-loop calculation (27) simply becomes
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F (λ, tD)=
∫ ∞

ε

ds
s

exp(−stD)
4 sin2 (sλ/2)

+O(t0D)=
∞∑

g=2

(
λ

tD

)2g−2 (−1)g−1B2g

2g(2g − 2)
+O(t0D) .

(29)
Since there are no other light particles, the above Eq. (29) encodes all singular
terms in the effective action. There will be regular terms coming from other
massive states. This is precisely the gap condition.

3 Quintic

We consider the familiar case of the quintic hypersurface in P
4. The topo-

logical string amplitudes F (g) were computed up to genus 4 in [17, 25] using
the holomorphic anomaly equation and fixing the holomorphic ambiguity by
various geometric data. It was also observed a long time ago [18] that the
leading terms in F (g) around the conifold point are the same as c = 1 strings
at the self-dual radius, thus providing useful information for the holomorphic
ambiguity. We want to explore whether we can find coordinates in which the
F (g) on the compact Calabi–Yau exhibit the gap structure around the coni-
fold point that was recently found for local Calabi–Yau geometries [12]. In
order to do this, it is useful to rewrite the topological string amplitudes as
polynomials [37]. We briefly review the formalism in [37].

The quintic manifold M has one Kähler modulus t and its mirror W has
one complex modulus ψ and is given by the equation 7

W = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 − 5ψ

1
5x1x2x3x4x5 = 0 . (30)

There is a relation between t and ψ known as the mirror map t(ψ). The mirror
map and the genus zero amplitude can be obtained using the Picard–Fuchs
equation on W

{(ψ∂ψ)4 − ψ−1(ψ∂ψ − 1
5
)(ψ∂ψ − 2

5
)(ψ∂ψ − 3

5
)(ψ∂ψ − 4

5
)}ω = 0 (31)

We can solve the equation as an asymptotic series around ψ → ∞.

3.1 ψ = ∞ Expansion and Integer Symplectic Basis

Here we set the notation for the periods in the integer symplectic basis on W
and the relation of this basis to the D-brane charges on M . Equations (34,
37) and following, apply to all one-parameter models.

The point ψ = ∞ has maximal unipotent monodromy and corresponds to
the large radius expansion of the mirror M [38]. In the variable z = 1

55ψ and
using the definitions
7 Here for later convenience we use a slightly different notation from that of [37].

Their notation is simply related to ours by a change of variable ψ5 → ψ.
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ω(z, ρ) :=
∞∑

n=0

Γ (5(n + ρ) + 1)
Γ 5(n + ρ + 1)

zn+ρ Dk
ρω :=

1
(2πi)kk!

∂k

∂kρ
ω

∣
∣
∣
∣
ρ=0

(32)

one can write the solutions [30]

ω0 = ω(z, 0) =
∞∑

n=0

(5n)!
(n!)5(55ψ)n

ω1 = Dρω(z, 0) =
1

2πi
(ω0 ln(z) + σ1)

ω2 = κD2
ρω(z, ρ) − cω0 =

κ

2 · (2πi)2
(
ω0 ln2(z) + 2σ1 ln(z) + σ2

)

ω3 = κD3
ρω(z, ρ) − cω1 + eω0 =

κ

6 · (2πi)3
(
ω0 ln3(z)

+ 3σ1 ln2(z) + 3σ2 ln(z) + σ3

)
(33)

The constants κ, c, e are topological intersection numbers, see below. The σk

are also determined by (31). To the first few orders, ω0 = 1+120z+113400z2+
O(z3), σ1 = 770z+810225z2 +O(z3), σ2 = 1150z+4208175/2z2 +O(z3) and
σ3 = −6900z − 9895125/2z2 + O(z3).

The solutions (33) can be combined into the period vector Π with respect
to an integer symplectic basis8 (Ai, Bj) of H3(W,Z) as follows [38]:

Π=

⎛

⎜
⎜
⎝

∫
B1

Ω∫
B2

Ω∫
A1 Ω∫
A2 Ω

⎞

⎟
⎟
⎠=

⎛

⎜
⎜
⎝

F0

F1

X0

X1

⎞

⎟
⎟
⎠=ω0

⎛

⎜
⎜
⎝

2F (0) − t∂tF (0)

∂tF (0)

1
t

⎞

⎟
⎟
⎠=

⎛

⎜
⎜
⎝

ω3 + c ω1 + e ω0

−ω2 − aω1 + c ω0

ω0

ω1

⎞

⎟
⎟
⎠ .

(34)

Physically, t is the complexified area of a degree one curve and is related by
the mirror map

2πit(ψ) =
∫

C
(iJ + B) =

ω1

ω0
= − log(55ψ) +

154
625ψ

+
28713

390625ψ2
+ .. (35)

1
z

= 55ψ =
1
q

+ 770 + 421375 q + 274007500 q2 + . . . (36)

to ψ. In (36), we inverted (35) with q = e2πit. The prepotential is given by

F (0) = − κ

3!
t3 − a

2
t2 + ct +

e

2
+ finst(q) (37)

where the instanton expansion finst(q) vanishes in the large radius q → 0
limit. The constants in (34, 37) can be related to the classical geometry of
8 With Ai ∩ Bj = δi

j and zero intersections otherwise.
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the mirror manifold [30, 38]. Denote by J ∈ H2(M,Z) the Kähler form which
spans the one-dimensional Kähler cone. Then κ =

∫
M

J ∧J ∧J is the classical
triple intersection number, c = 1/24

∫
M

c2(TM ) ∧ J is proportional to the
evaluation of the second Chern class of the tangent bundle TM against J , e =
ζ(3)/(2πi)3

∫
M

c3(TM ) is proportional to the Euler number and a is related to
the topology of the divisor D dual to J . A1 is topologically a T 3

R
, while analysis

at the conifold shows that the dual cycle B1 has the topology of an S3.
The identification of the central charge formula for compactified type

II supergravity [39] with the K-theory charge of D-branes as objects A ∈
K(M) [40, 41],

Q · Π = −
∫

M

e−Ĵch(A)
√

td(M) = Z(A), (38)

with Ĵ = t(iJ + B) for the one-dimensional Kähler cone, checks the D-brane
interpretation of (34) [42, 43, 44] in the q → 0 limit on the classical terms
κ, a, c, but misses the χζ(3)/(2πi)3 term. Based on their scaling with the
area parameter t the periods (F0, F1,X0,X1) are identified with the masses
of (D6,D4,D0,D2) branes. For smooth intersections and D the restriction of
the hyperplane class we can readily calculate κ, a, c, χ using the adjunction
formula, see Appendix A.

3.2 Polynomial Expansion of F (g)

From the periods, or equivalently the prepotential F (0), we can compute the
Kähler potential K := − log(i

(
X̄ āFa −XaF̄ā

)
) and metric Gψψ̄ := ∂ψ∂̄ψ̄ K

in the moduli space. The genus zero Gromov–Witten invariants are obtained
by expanding F (0) in large Kähler parameter in a power series in q, see Sect. 5.

We use the notation of [37] and introduce the following symbols:

Ap :=
(ψ∂ψ)pGψψ̄

Gψψ̄

, Bp :=
(ψ∂ψ)pe−K

e−K
, (p = 1, 2, 3, · · · )

C := Cψψψψ
3, X :=

1
1 − ψ

=: −1
δ

(39)

Here Cψψψ ∼ ψ−2

1−ψ is the three-point Yukawa coupling, and A := A1 = −ψΓψ
ψψ

and B := B1 = −ψ∂ψK are the Christoffel and Kähler connections. In the
holomorphic limit ψ̄ → ∞, the holomorphic part of the Kähler potential and
the metric go like

e−K ∼ ω0, Gψψ̄ ∼ ∂ψt, (40)

so in the holomorphic limit, the generators Ap and Bp are

Ap =
(ψ∂ψ)p(∂ψt)

∂ψt
, Bp =

(ψ∂ψ)pω0

ω0
. (41)
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It is straightforward to compute them in an asymptotic series using the
Picard–Fuchs equation. There are also some derivative relations among the
generators,

ψ∂ψAp = Ap+1 −AAp, ψ∂ψBp = Bp+1 −BBp, ψ∂ψX = X(X − 1).

The topological amplitudes in the “Yukawa coupling frame” are denoted as

Pg := Cg−1F (g), P (n)
g = Cg−1ψnC

(g)
ψn . (42)

The A-model higher genus Gromov–Witten invariants are obtained in the
holomorphic limit t̄ → ∞ with a familiar factor of ω0 as

F
(g)
A-model = lim

t̄→∞
ω

2(g−1)
0 (

1 − ψ

5ψ
)g−1Pg. (43)

The P
(n)
g are defined for g = 0, n ≥ 3, g = 1, n ≥ 1 and g = 2, n ≥ 0. We have

the initial data

P
(3)
g=0 = 1

P
(1)
g=1 = −31

3
B +

1
12

(X − 1) − 1
2
A +

5
3
, (44)

and using the Christoffel and Kähler connections we have the following recur-
sion relation in n,

P (n+1)
g = ψ∂ψP

(n)
g − [n(A + 1) + (2 − 2g)(B − 1

2
X)]P (n)

g . (45)

One can also use the Picard–Fuchs equation and the special geometry relation
to derive the following relations among generators:

B4 = 2XB3 − 7
5
XB2 +

2
5
XB − 24

625
X

A2 = −4B2 − 2AB − 2B + 2B2 − 2A + 2XB + XA +
3
5
X − 1. (46)

By taking derivatives w.r.t. ψ one see that all higher Ap (p ≥ 2) and Bp

(p ≥ 4) can be written as polynomials of A, B, B2, B3, X. It is convenient to
change variables from (A,B,B2, B3,X) to (u, v1, v2, v3,X) as

B = u, A = v1 − 1 − 2u, B2 = v2 + uv1,

B3 = v3 − uv2 + uv1X − 2
5
uX. (47)

Then the main result of [37] is the following proposition.

Proposition: Each Pg (g ≥ 2) is a degree 3g − 3 inhomogeneous polynomial
of v1, v2, v3, X, where one assigns the degree 1, 2, 3, 1 for v1, v2, v3,X, respec-
tively.
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For example, at genus two the topological string amplitude is

P2 =
25
144

− 625
288

v1 +
25
24

v2
1 − 5

24
v3
1 − 625

36
v2 +

25
6
v1v2 +

350
9

v3 − 5759
3600

X

−167
720

v1X +
1
6
v2
1X − 475

12
v2X +

41
3600

X2 − 13
288

v1X
2 +

X3

240
. (48)

The expression for the Pg, g = 1, . . . , 12 for all models discussed in this chapter
can be obtained in a Mathematica readable form on [45], see “Pgfile.txt”.

3.3 Integration of the Holomorphic Anomaly Equation

The anti-holomorphic derivative ∂ψ̄Bp of p ≥ 2 can be related to ∂ψ̄B [37].
Assuming ∂ψ̄A and ∂ψ̄B are independent, one obtains two relations for P

(n)
g

from the BCOV holomorphic anomaly equation as the following:

∂Pg

∂u
= 0 (49)

(
∂

∂v1
− u

∂

∂v2
− u(u + X)

∂

∂v3
)Pg = −1

2
(P (2)

g−1 +
g−1∑

r=1

P (1)
r P

(1)
g−r) (50)

The first Eq. (49) implies there is no u dependence in Pg, as already taken
into account in the main proposition of [37]. The second Eq. (50) provides a
very efficient way to solve Pg recursively up to a holomorphic ambiguity. To
do this, one writes down an ansatz for Pg as a degree 3g − 3 inhomogeneous
polynomial of v1, v2, v3, X, plugs in Eq. (50), and uses the lower genus results
P

(1)
r , P (2)

r (r ≤ g−1) to fix the coefficients of the polynomials. The number of
terms in general inhomogeneous weighted polynomials in (v1, v2, v3,X) with
weights (1, 2, 3, 1) is given by the generating function

1
(1 − x)3(1 − x2)(1 − x3)

=
∞∑

n=0

p(n)xn . (51)

It is easy to see from the Eq. (50) that the terms v1, . . . v
2g−4
1 vanish, which

implies that the number of terms in Pg is

ng = p(3g − 3) − (2g − 4), (52)

example ng = 14, 62, 185, 435, 877, 1590, 2666, 4211, 6344 for g = 1, . . . , 10.
Comparing with

∑∞
n=1 p̃(n)xn = 1

(1−x)5 it follows in particular that asymp-
totically

ng � (3g − 3)4 . (53)

Note that Eq. (50) determines the term P̂g(v1, v2, v3,X) in

Pg =: P̂g(v1, v2, v3,X) + f (g)(X) (54)
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completely. We can easily understand why the terms in the modular as well
as holomorphic ambiguity f (g)(X) are not fixed, by noting that the Eq. (50)
does not change when we add a term proportional to Xi to Pg. This ambiguity
must have the form [25, 37]

f (g) =
3g−3∑

i=0

aiX
i . (55)

The maximal power of X is determined by (29). This follows from (42) and the
universal behaviour of tD ∼ δ +O(δ2) at the conifold (73). Note in particular
from (75) that P̂g is less singular at that point. The minimal power in (55)
follows from (28) for ψ ∼ ∞ and the leading behaviour of the solutions in
Sect. 3.1.

We will try to fix these 3g− 2 unknown constants ai (i = 0, 1, 2 · · · 3g− 3)
by special structure of expansions of F (g) around the orbifold point ψ ∼ 0 and
the conifold point ψ ∼ 1. Before proceeding to this, we note the constant term
is fixed by the known leading coefficients in large complex structure modulus
limit ψ ∼ ∞ in [19, 36, 46].

The leading constant terms in the A-model expansion ψ ∼ ∞ come from
the constant map from the worldsheet to the Calabi–Yau (28). The large
complex structure modulus behaviour of X is

X ∼ 1
ψ

∼ q = e2πit. (56)

So only the constant term a0 in the holomorphic ambiguity contributes to
leading term in A-model expansions (28) and is thus fixed. We still have
3g − 3 coefficients ai (i = 1, 2, · · · , 3g − 3) to be fixed.

3.4 Expansions Around the Orbifold Point ψ = 0

To analyse the F (g) in a new region of the moduli space we have to find the
right choice of polarization. To do this we analytically continue the periods to
determine the symplectic pairing in the new region and pick the new choice
of conjugated varaibles.

The solutions of the Picard–Fuchs equation around the orbifold pointψ ∼ 0
are four power series solutions with the indices 1/5, 2/5, 3/5, 4/5

ωorb
k = ψ

k
5

∞∑

n=0

([
k
5

]
n

)5

[k]5n

(
55ψ

)n

= − Γ (k)
Γ 5

(
k
5

)

∫

C0

ds
e2πis − 1

Γ 5
(
s + k

5

)

Γ (5s + k)
(
55ψ

)s+ k
5 , k = 1, . . . , 4 .

(57)
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____
d

(d−1)
d
1__−2 −1 0 1 2.......

C∞ for |ψ| > 1 C0 for |ψ| < 1.

The Pochhammer symbol are defined as [a]n := Γ (a + n)/Γ (a) and we
normalized the first coefficient in ωorb

k = ψ
k
5 +O(ψ5+k/5) to one. The expres-

sion in the first line is recovered from the integral representation by noting
that the only poles inside C0 for which the integral converges for |ψ| < 0
are from g(s) = 1/exp(2πis) − 1, which behaves at sε

−n = n − ε, n ∈ N as
g(sε

−n) ∼ −1/2πiε.
Up to normalization this basis of solutions is canonically distinguished, as

it diagonalizes the Z5 monodromy at ψ = 0. Similar as for the C
3/Z3 orb-

ifold [14], it can be viewed as a twist field basis. Here this basis is induced from
the twist field basis of C

5/Z5. As it was argued in [14] for C
3/Z3, this twist

field basis provides the natural coordinates in which the F (g) near the orbifold
point can be interpreted as generating functions for orbifold Gromov–Witten
invariants. Following up on foundational work on orbifold Gromov–Witten
theory [47] and examples in two complex dimensions [48] this prediction has
been checked by direct computation of orbifold Gromov–Witten invariants [49]
at genus zero. This provides a beautiful check on the global picture of mirror
symmetry.

As explained in [14] the relation between the large radius generating
function of Gromov–Witten invariants and generating function of orbifold
Gromov–Witten invariants is provided by the metaplectic transformation of
the wave function [27]. Since the change of the phase space variables from
large radius to the orbifold the symplectic form is only invariant up to scaling
one has to change the definition of the string coupling, which plays the role of
� in the metaplectic transformation. These can be viewed as small phase space
specialization of the metaplectic transformation on the large phase space [50].

Using the modular invariance of the anholomorphic F̂ g(t, t̄) it has been
further shown in [14] that this procedure of obtaining the transformed holo-
morphic wave function is simply equivalent to taking the holomorphic limit
on the F̂ g(t, t̄). This point was made [14] for the local case. But the only point
one has to keep in mind for the global case is that F̂ g(t, t̄) are globally well
defined sections of the Kähler line bundle, i.e. one has to perform a Kähler
transformation along with the holomorphic limit.

We will now study the transformation from the basis (34) to the basis
(57) to make B-model prediction along the lines of [14] with the additional
Kähler transformation. Since the symplectic form ω on the moduli space is
invariant under monodromy and ωorb

k diagonalizes the Z5 monodromy, we
must have in accordance with the expectation from the orbifold cohomology
H∗(C5/Z5) = C10 ⊕ C11 ⊕ C12 ⊕ C13 ⊕ C14
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ω = dFk ∧ dXk = −54s1

6
dωorb

4 ∧ dωorb
1 +

54s2

2
dωorb

3 ∧ dωorb
2 . (58)

The rational factors above have been chosen to match constraints from spe-
cial geometric discussed below. Similarly the monodromy invariant Kähler
potential must have the form

e−K =
4∑

k=1

rkω
orb
k ωorb

k . (59)

To obtain the si, ri by analytic continuation to the basis (34) we follow
[38] for the quintic and the generalization in [51] for other cases and note
that the integral converges for |ψ| > 1 due to the asymptotics of the
f(s) = Γ 5(s + k/5)/Γ (5s + k) term, when the integral is closed along C∞ [38].
At sε

n = −n − ε the g(sε
n) pole is compensated by the f(sε

n) zero and at
sε

n,k = −n− k/5 − ε we note the expansions

g(sε
n,k) = αk

1−αk + 2πiαk

(1−αk)2
ε + (2πi)2αk(1+αk)

2(1−αk)3
ε2+ (2πi)3αk(1+4αk+α2k)

6(1−αk)4
ε3 + O(ε4)

f(sε
n,k) = κω0(n)

ε4 + κσ1(n)
ε3 + 1

ε2

(
κσ2(n)

2 + (2πi)2c2Jω0(n)
24

)
+

1
ε

(
κσ3(n)

6 + (2πi)2c2Jσ1(n)
24 + χζ(3)ω0(n)

)
+ O(ε0)

(
55ψ

)sε
n = zn(1 + log(z)ε + 1

2 log(z)2ε2 + 1
6 log(z)3ε3 + O(ε4))

(60)
Here α = exp(2πi/5). κ =

∫
M

J3, c2J =
∫

M
c2J and χ =

∫
M

c3 are calculated
in Appendix A.1.9 The ω0(n), σi(n) are coefficients of the series we encoun-
tered in Sect. 3.1. Performing the residue integration and comparing with (33,
34) we get

ωorb
k = (2πi)4Γ (k)

Γ 5( k
5 )

(
αkF0
1−αk − αkF1

(1−αk)2
+ 5αk(α2k−αk+1)X0

(1−αk)4
+ αk(8αk−3)X1

(1−αk)3

)
(61)

It follows with ri =
Γ 10( k

5 )
Γ 2(k) ci that

c1 = −c4 = α2(1 − α)(2 + α2 + α3), c3 = −c2 = α(2 + α− α2 − 2α3)

s1 = s2 = − 1
55(2πi)3

(62)
⎛

⎜
⎜
⎝

F0

F1

X0

X1

⎞

⎟
⎟
⎠ = ψ1/5αΓ

5
(

1
5

)

(2πi)4

⎛

⎜
⎜
⎝

(1 − α)(α− 1 − α2)
1
5 (8 − 3α)(1 − α)2

(1 − α + α2)
1
5 (1 − α)3

⎞

⎟
⎟
⎠ + O(ψ2/5) . (63)

9 In fact using the generalization of (57) in [51] it is easily shown that the combi-
natorics, which leads to (116), are the same as the ones leading to the occurrence
of the classical intersections here.



Topological String Theory on Compact Calabi–Yau 63

Equation (62) implies that up to a rational rescaling of the orbifold peri-
ods the transformation of the wave functions from infinity to the orbifold is
given by a metaplectic transformation with the same rescaling of the string
coupling as for the C

3/Z3 case in [2]. Equation (63) implies that there are
no projective coordinates related to an Sp(4,Z) basis, which would vanish at
the orbifold. This means that there is no massless RR state in the K-theory
charge lattice which vanishes at the orbifold point. We further note that after
rescaling of the orbifold periods the transformation (61) can be chosen to lie
in Sp(4,Z[α, 1/5]).

We can define the analogue of mirror map at the orbifold point,

s =
ωorb

2

ωorb
1

= ψ
1
5 (1 +

13ψ
360

+
110069ψ2

9979200
+ O(ψ3)) (64)

where we use the notation s, as in [14], to avoid confusion with the mirror map
in the large volume limit. We next calculate the genus zero prepotential at
the orbifold point. For convenience let us rescale our periods ω̂k−1 = 53/2ωorb

k .
The Yukawa–Coupling is transformed to the s variables as

Csss =
1
ω̂2

0

5
ψ2(1 − ψ)

(
∂ψ

∂s

)3

= 5 +
5
3
s5 +

5975
6048

s10 +
34521785
54486432

s15 + O(s20) .

(65)
A trivial consistency check of special geometry is that the genus zero prepoten-
tial F (0) =

∫
ds

∫
ds

∫
ds Csss appears in the periods Π̂orb = (ω̂0, ω̂1, 5/2!ω̂2,

−5/3! ω̂3)T as

Π̂orb = ω̂0

⎛

⎜
⎜
⎝

1
s

∂sF
(0)
A-orbf.

2F (0)
A-orbf. − s∂sF

(0)
A-orbf.

⎞

⎟
⎟
⎠ . (66)

This can be viewed also as a simple check on the lowest order meta-plectic
transformation of Ψ which is just the Legendre transformation. Note that the
Yukawa coupling is invariant under the Z5 which acts as s 
→ αs. Z5 implies
further that there can be no integration constants, when passing from Csss

to F0 and the coupling λ must transform with λ 
→ α3/2λ to render F (λ, s, s̄)
invariant.

The holomorphic limit ψ̄ → 0 of Kähler potential and metric follows from
(59) by extracting the leading anti-holomorphic behaviour. Denoting10 by ak

the leading powers of ωorb
k we find

lim
ψ̄→0

e−K = r1ψ̄
a1ωorb

1 , lim
ψ̄→0

Gψψ̄ = ψ̄a2−a1−1 r2
r1

(
a2

a1
− 1

)
∂s

∂ψ
. (67)

10 This is to make contact with the other one modulus cases. Of course if a1 = a2 a
log singularity appears and the formula does not apply.
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Note that the constants and ψ̄ and its leading power are irrelvant for the
holomorphic limit of the generators (39)

X =
1

1 − ψ
= 1 + ψ + ψ2 + O(ψ3)

A = −4
5

+
13
60

ψ +
3551
18144

ψ2 + O(ψ3)

B =
1
5

+
1

120
ψ +

17
4032

ψ2 + O(ψ3)

B2 =
1
25

+
7

600
ψ +

1027
100800

ψ2 + O(ψ3)

B3 =
1

125
+

43
3000

ψ +
1633
72000

ψ2 + O(ψ3).

Using this information and integrating (44) we obtain the genus one free
energy F

(1)
A-orbf. = −s5/9 + . . .. The regularity of F (1), i.e. the absence of log

terms, is expected as there are no massless BPS states at the Gepner-point.
Because of this, the considerations in Sect. 2.2 also imply that the higher
genus amplitudes

F
(g)
A-orbf. = lim

¯̃t→0
(ω̂0)2(g−1)(

1 − ψ

5ψ
)g−1Pg (68)

have no singularity at the orbifold point ψ ∼ 0. This is in accordance with
the calculations in [25] and implies that Pg/ψ

3
5 (g−1) is regular at ψ ∼ 0.

The situation for the higher genus amplitudes for the compact O(5)
constraint in P

4 is considerably different from the one for the resolution
O(−5) → P

4 of the C
5/Z5. In normal Gromov–Witten theory for genus g > 0

on O(5) in P
4 there is no bundle whose Euler class of its pullback from the

ambient space P
4 to the moduli space of maps gives rise to a suitable measure

on Mg,β that counts the maps to the quintic. This is the same difficulties one
has to face for higher genus calculation for the orbifold GW theory in O(5) in
P

4 and it is notably different11 from the equivariant GW theory on C
5/Z5.

However we claim that our F
(g)
A-orbf. predictions from the B-model compu-

tation contain the information about the light even RR states at the orbifold
point in useful variables and could in principle be checked in the A-model
by some version of equivariant localization. Below we give the first few order
results. They are available to genus 20 at [45].

11 Since the brane-bound state cohomology at infinity can only be understood upon
including higher genus information, see Sects. 5 and 5.2, the claims that one can
learn essential properties about the D-branes of the quintic at small volume from
the C

5/Z5 orbifold might be overly optimistic.
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F
(0)
A-orbf. = 5 s3

6 + 5 s8

1008 + 5975 s13

10378368 + 34521785 s18

266765571072 + . . .

F
(1)
A-orbf. = − s5

9 − 163 s10

18144 − 85031 s15

46702656 − 6909032915 s20

20274183401472 + . . .

F
(2)
A-orbf. = 155 s2

18 − 5 s7

864 + 585295 s12

14370048 + 1710167735 s17

177843714048 + . . .

F
(3)
A-orbf. = 488305 s4

9072 − 3634345 s9

979776 − 1612981445 s14

7846046208 − 2426211933305 s19

116115777662976 + . . .

F
(4)
A-orbf. = 48550 s

567 + 36705385 s6

163296 + 16986429665 s11

603542016 + 341329887875 s16

70614415872 + . . .

F
(5)
A-orbf. = 1237460905 s3

224532 + 108607458385 s8

28740096 − 2079654832074515 s13

1553517149184

− 50102421421803185 s18

438808843984896 + . . .

The holomorphic ambiguity (55) is a power series of ψ starting from a
constant term, so requiring Pg/ψ

3/5(g−1) to be regular imposes

�3
5
(g − 1) (69)

number of relations in ai in (55), where �3/5(g−1) is the ceiling, i.e. the small-
est integer greater or equal to 3

5 (g − 1). We note that the leading behaviour
ωorb

1 ∼ ψ1/d with d = 5 for the quintic, which is typical for an orbifold point
in compact Calabi–Yau and which “shields” the singularity and diminishes
the boundary conditions at the orbifold point from g− 1 to �d− 2/d(g− 1) .
If this period is non-vanishing at ψ = 0 and it is indeed simply a constant for
all local cases [13], one gets g−1 conditions, which together with the gap con-
dition at the conifold and the constant map information is already sufficient
to completely solve the model. An example of this type is O(−3) → P

2.

3.5 Expansions Around the Conifold Point ψ = 1

An new feature of the conifold region is that there is an choice in picking
the polarization, but as we will show the gap property is independent of this
choice.

A basis of solutions of the Picard–Fuchs equation around the conifold point
ψ − 1 = δ ∼ 0 is the following

Πc =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ωc
0

ωc
1

ωc
2

ωc
3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + 2δ3

625 − 83δ4

18750 + 757δ5

156250 + O(δ6)

δ − 3δ2

10 + 11δ3

25 − 217δ4

2500 + 889δ5

15625 + O(δ6)

δ2 − 23δ3

30 + 1049δ4

1800 − 34343δ5

75000 + O(δ6)

ωc
1 log(δ) − 9 d2

20 − 169 d3

450 + 27007 d4

90000 − 152517 d5

625000 + O(δ6)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(70)
Here we use the superscript “c” in the periods to denote them as solutions
around the conifold point. We see that one of the solutions ωc

1 is singled out as
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it multiplies the log in the solution ωc
3. By a Lefshetz argument [52] it corre-

sponds to the integral over the vanishing S3 cycle B1 and moreover a solution
containing the log is the integral over dual cycle A1. Comparing with (34, 38)
shows in the Type IIA interpretation that the D6 brane becomes massless.
To determine the symplectic basis we analytically continue the solutions (34)
from ψ = ∞ and get

⎛

⎜
⎜
⎜
⎜
⎜
⎝

F0

F1

X0

X1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0
√

5
2πi 0 0

a− 11i
2 g b− 11i

2 h c− 11i
2 r 0

d e f −
√

5
(2πi)2

ig ih ir 0

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ωc
0

ωc
1

ωc
2

ωc
3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(71)

Six of the real numbers a, . . . , r are only known numerically.12 Nevertheless
we can give the symplectic form exactly in the new basis

dFk ∧ dXk = − 1
(2πi)3

(
5
2
dωc

2 ∧ dωc
0 + (−5)dωc

3 ∧ dωc
1

)

. (72)

The mirror map should be invariant under the conifold monodromy and van-
ishing at the conifold. The vanishing period has D6 brane charge and is singled
out to appear in the numerator of the mirror map. The numerator is not fixed
up to the fact that ωc

3 should not appear. The simplest mirror map compatible
with symplectic form (72) is

tD(δ) :=
ωc

1

ωc
0

= δ − 3δ2

10
+

11δ3

75
− 9δ4

100
+

5839t5D
93750

+ O(t6D) (73)

δ(tD) = tD +
3t2D
10

+
t3D
30

+
t4D
200

+
169t5D
375000

+ O(t6D) (74)

We call this the dual mirror map and denote it tD to distinguish from the
large complex structure modulus case.

In the holomorphic limit δ̄ → 0, the Kahler potential and metric should
behave as e−K ∼ ωc

0 and Gδδ̄ ∼ ∂δtD. We can find the asymptotic behaviour
of various generators,

12 a = 6.19501627714957 . . ., b = 1.016604716702582 . . .,
c = −0.140889979448831 . . ., d = 1.07072586843016 . . ., e =

−0.0247076138044847 . . ., g = 1.29357398450411 . . ., h =
2 b g π−(

√
5 d)

2 a π
,

r = 5+16 c g π3

16 a π3 , f =
√

5 b+8 c d π2

8 a π2 .
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X =
1

1 − ψ
= −1

δ

A = −3
5
− 2

25
δ +

2
125

δ2 − 52
9375

δ3 + O(δ4)

B =
6

625
δ2 − 76

9375
δ3 +

611
93750

δ4 + O(δ5)

B2 =
12
625

δ − 16
3125

δ2 +
82

46875
δ3 + O(δ4)

B3 =
12
625

+
28

3125
δ − 78

15625
δ2 + O(δ3). (75)

Now we can expand

F
(g)
conifold = lim

δ̄→0
(ωc

0)
2(g−1)(

1 − ψ

ψ
)g−1Pg (76)

around the conifold point in terms of tD using the dual mirror map (73).
Remarkably it turns out that shifts ωc

0 → ωc
0 + b1ω

c
1 + b2ω

c
2 does not affect

the structure we are interested in. The fact that the b1 shifts do not affect the
amplitudes is reminiscent of the SL(2,C) orbit theorem [53, 54] and is proven
in Appendix A.3. It is therefore reasonable to state the results in the more
general polarization and define ω̂c

0 = ωc
0 + b1ω

c
1 + b2ω

c
2. We first determine

the genus 0 prepotential checking consistency of the solutions with special
geometry. Defining t̂D = ωc

1/ω̂
c
0 and Πcon = (ω̂c

0, ω
c
1, 5/2ω

c
2,−5ωc

3)
T we get

Π̂orb = ω̂0

⎛

⎜
⎜
⎝

1
t̂D

2F (0)
conif. − t̂D∂t̂D

F
(0)
conif.

∂t̂D
F

(0)
conif.

⎞

⎟
⎟
⎠ . (77)

We can now calculate the F (g) in the generalized polarization. Since the nor-
malization of ω̂c

0 is not fixed by the Picard–Fuchs equation, we pick the normal-
ization b0 = 1 that will be convenient later on.13 Using the known expression
for the ambiguity at genus 2, 3 [17, 25, 37] for g = 0 − 3 and Castelnuovos
bound for g > 3 we find the same interesting structure first observed in [12]

F
(0)
conif. = −5

2
log(t̂D)t̂2D +

5
12

(1 − 6b1) t̂3D

+
(

5
12

(b1 − 3b2) −
89

1440
− 5

4
b21

)

t̂4D + O(t̂5D)

13 The b0 dependence can be restored noting that each order in t̂D is homogeneous
in bi.
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F
(1)
conif. = − log(t̂D)

12
+

(
233
120

− 113 b1
12

)

t̂D

+
(

233 b1
120

− 113 b12

24
− 107b2

12
− 2681

7200

)

t̂2D + O(t̂3D)

F
(2)
conif. =

1
240t̂2D

−
(

120373
72000

+
11413b2

144

)

+
(

107369
150000

− 120373 b1
36000

+
23533 b2

720
− 11413b1b2

72

)

t̂D + O(t̂2D)

F
(3)
conif. =

1
1008 t̂4D

−
(

178778753
324000000

+
2287087 b2

43200
+

1084235 b22

864

)

+ O(t̂D)

F
(4)
conif. =

1
1440 t̂6D

−
( 977520873701

3402000000000
+

162178069379 b2
3888000000

+
5170381469 b22

2592000

+
490222589 b23

15552

)
+ O(t̂D). (78)

As explained in Sect. 2.2 we expect this gap structure to be present at higher
genus as in (2), i.e.

F
(g)
conifold =

(−1)g−1B2g

2g(2g − 2)(it̂D)2g−2
+ O(t̂0D). (79)

If this is true then it will impose 2g − 2 conditions on the holomorphic am-
biguity (55). We can further note that because the prefactor in (76) goes like
δg−1 and the generator X goes like X ∼ 1/δ, the terms aiX

i in holomorphic
ambiguity (55) with i ≤ g−1 do not affect the gap structure in (2). Therefore
the gap structure fixes the coefficients ai of i = g, · · · , 3g − 3 in (55), but
not the coefficients ai with i ≤ g − 1. Note that the choice of bi, i = 0, 1, 2
does not affect the gap structure at all. In Appendix A.3 it is proven that
the generators of the modular forms in Pg do not change under the shift b1.
The effect of this shift is hence merely a Kähler gauge transformation. On the
other hand we note that imposing the invariance of the gap structure under
the b2 shift does not give further conditions on the ai, but it does affect the
subleading expansion.

3.6 Fixing the Holomorphic Ambiguity: A Summary of Results

Putting all the information together, let us do a counting of number of un-
known coefficients. Originally we have 3g−2 coefficients in (55). The constant
map calculation [19, 35, 46] in A-model large complex structure modulus limit
ψ ∼ ∞ fixes one constant a0. The conifold expansion around ψ ∼ 1 fixes 2g−2
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coefficients ai of i = g, · · · , 3g − 3 and the orbifold expansion around ψ ∼ 0
further fixes �3(g − 1)/5 coefficients. So the number of unknown coefficients
at genus g is

3g − 2 − (1 + 2g − 2 + �3(g − 1)
5

 ) = [
2(g − 1)

5
]. (80)

This number is zero for genus g = 2, 3. So we could have computed the g = 2, 3
topological strings using this information, although the answers were already
known. At g ≥ 4 there are still some unknown constants. However, in the A-
model expansion when we rewrite the Gromov–Witten invariants in terms of
Gopakumar–Vafa invariants, one can in principle use the Castelnuovos bound
to fix the F (g) up to genus 51. This will be shown in Sect. 5.2.

4 One-Parameter Calabi–Yau Spaces with Three
Regular Singular Points

We generalize the analysis for the quintic to other one Kähler parameter
Calabi–Yau threefolds, whose mirror W has a Picard–Fuchs system with three
regular singular points. Note that this type of CY has been completely clas-
sified [55] starting from the Riemann–Hilbert reconstruction of the Picard–
Fuchs equations given the monodromies and imposing the special geometry
property as well as integrality conditions on the solutions of the latter. There
are 13 cases whose mirrors can be realized as hypersurfaces and complete
intersections in weighted projective spaces with trivial fundamental group,14

and are well-known in the mirror symmetry literature. A fourteenth case is
related to a degeneration of a two-parameter model as pointed out in [56].
Five are obtained as a free discrete orbifold of the former CY.

We focus on the 13 former cases. In the notation of [25] these com-
plete intersections of degree (d1, d2, · · · , dk) in weighted projective spaces
P

n(w1, . . . , wl), Calabi–Yau manifolds are abbreviated as Xd1,d2,··· ,dk

(w1, . . . , wl). For example, the familiar quintic manifold is denoted as X5(15).
The list of 13 such examples is the following:

X5(15) : a = (
1
5
,
2
5
,
3
5
,
4
5
), X6(14, 2) : a = (

1
6
,
2
6
,
4
6
,
5
6
),

X8(14, 4) : a = (
1
8
,
3
8
,
5
8
,
7
8
),

X10(13, 2, 5) : a = (
1
10

,
3
10

,
7
10

,
9
10

), X3,3(16) : a = (
1
3
,
1
3
,
2
3
,
2
3
),

14 We also have some results on the cases with non-trivial fundamental group. They
are available on request.
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X4,2(16) : a = (
1
4
,
1
2
,
1
2
,
3
4
), X3,2,2(17) : a = (

1
3
,
1
2
,
1
2
,
2
3
),

X2,2,2,2(18) : a = (
1
2
,
1
2
,
1
2
,
1
2
), X4,3(15, 2) : a = (

1
4
,
1
3
,
2
3
,
3
4
),

X4,4(14, 22) : a = (
1
4
,
1
4
,
3
4
,
3
4
), X6,2(15, 3) : a = (

1
6
,
1
2
,
1
2
,
5
6
),

X6,4(13, 22, 3) : a = (
1
6
,
1
4
,
3
4
,
5
6
), X6,6(12, 22, 32) : a = (

1
6
,
1
6
,
5
6
,
5
6
).

The examples satisfy the Calabi–Yau condition
∑

i di =
∑

i wi required by
the vanishing of the first Chern class. The components of the vector a specify
the Picard–Fuchs operators for the mirror manifolds with h2,1 = 1,

{(ψ ∂

∂ψ
)4 − ψ−1

4∏

i=1

(ψ
∂

∂ψ
− ai)}Π = 0. (81)

The indices of the Picard–Fuchs equation satisfy
∑4

i=1 ai = 2 and we have
arranged ai in increasing order for later convenience.

There are three singular points in the moduli space. The maximally unipo-
tent point is the large complex structure modulus limit ψ ∼ ∞ that has three
logarithmic solutions for the Picard–Fuchs equation. The conifold point is
ψ = 1 with three power series solutions and one logarithmic solution for the
Picard–Fuchs equation. If the indices ai are not degenerate, the Picard–Fuchs
equation around the orbifold point ψ = 0 has four powers series solutions with
the leading terms going like ψai . Each degeneration of the indices generates a
logarithmic solution for the Picard–Fuchs equation around the orbifold point
ψ = 0.

4.1 The Integration of the Anomaly Equation

We can straightforwardly generalize the formalism in [37] to the above class of
models. The mirror map is normalized as t = log(

∏
i d

di
i /

∏
i w

wi
i ψ)+O(1/ψ),

so that the classical intersection number in the prepotential is F (0) =
κ/6t3 + · · · where κ =

∏
i di/

∏
i wi. The generators of the topological string

amplitudes are defined accordingly,

Ap :=
(ψ∂ψ)pGψψ̄

Gψψ̄

, Bp :=
(ψ∂ψ)pe−K

e−K
, (p = 1, 2, 3, · · · )

C := Cψψψψ
3, X :=

1
1 − ψ

. (82)

Here the familiar three-point Yukawa coupling is Cψψψ ∼ ψ−2/1 − ψ and as
in the case of the quintic we denote A := A1 and B := B1. The generators
satisfy the derivative relations
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ψ∂ψAp = Ap+1 −AAp, ψ∂ψBp = Bp+1 −BBp, ψ∂ψX = X(X − 1),

and the recursion relations

B4 = (
∑

i

ai)XB3 − (
∑

i<j

aiaj)XB2 + (
∑

i<j<k

aiajak)XB − (
∏

i

ai)X,

A2 = −4B2 − 2AB − 2B + 2B2 − 2A + 2XB + XA− r0X − 1, (83)

where the first equation can be derived from the Picard–Fuchs equation (81)
and the second equation is derived from the special geometry relation up
to a holomorphic ambiguity denoted by the constant r0. One can fix the
constant r0 by expanding the generators around any of the singular points in
the moduli space. For example, as we will explain, the asymptotic behaviours
of various generators around the orbifold point are Ap = (a2−a1−1)p+O(ψ),
Bp = ap

1 + O(ψ) and X = 1 + O(ψ), so we find the constant is

r0 = a1(1 − a1) + a2(1 − a2) − 1. (84)

The polynomial topological amplitudes Pg are defined by P
(n)
g := Cg−1ψnC

(g)
ψn

and satisfy the recursion relations with initial data

P
(3)
g=0 = 1,

P
(1)
g=1 = (

χ

24
− 2)B − A

2
+

1
12

(X − 1) +
s1

2
,

P (n+1)
g = ψ∂ψP

(n)
g − [n(A + 1) + (2 − 2g)(B − X

2
)]P (n)

g , (85)

where χ is the Euler character of the Calabi–Yau space and s1 = 2c−5/6 is a
constant that can be fixed by the second Chern class of the Calabi–Yau; see
Appendix A. We provide the list of constants for the 13 cases of one-parameter
Calabi–Yau in the following Table 1.

After changing variables to a convenient basis from (A,B,B2, B3,X) to
(u, v1, v2, v3,X) as the following:

Table 1. Euler numbers and the constant s1

CY X5(1
5) X6(1

4, 2) X8(1
4, 4) X10(1

3, 2, 5) X3,3(1
6)

χ −200 −204 −296 −288 −144

s1
10
3

8
3

17
6

2 11
3

CY X4,2(1
6) X3,2,2(1

7) X2,2,2,2(1
8) X4,3(1

5, 2) X4,4(1
4, 22)

χ −176 −144 −128 −156 −144

s1
23
6

25
6

9
2

19
6

5
2

CY X6,2(1
5, 3) X6,4(1

3, 22, 3) X6,6(1
2, 22, 32)

χ −256 −156 −120

s1
7
2

11
6

1
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B = u, A = v1 − 1 − 2u, B2 = v2 + uv1,

B3 = v3 − uv2 + uv1X − (r0 + 1)uX.

One can follow [37] and use the BCOV formalism to show that Pg is a degree
3g − 3 inhomogeneous polynomial of v1, v2, v3,X with the assigned degrees
1, 2, 3, 1 for v1, v2, v3,X respectively. The BCOV holomorphic anomaly equa-
tion becomes

(
∂

∂v1
− u

∂

∂v2
− u(u + X)

∂

∂v3
)Pg = −1

2
(P (2)

g−1 +
g−1∑

r=1

P (1)
r P

(1)
g−r). (86)

As in the case of the quintic, the holomorphic anomaly equation determines
the polynomial Pg up to a holomorphic ambiguity

f =
3g−3∑

i=0

aiX
i. (87)

4.2 The Boundary Behaviour

The constant term a0 is fixed by the known constant map contribution in the
A-model expansion

F g
A-model = lim

t→∞
ω

2(g−1)
0 (

1 − ψ

κψ
)g−1Pg, (88)

where ω0 is the power series solution in the large complex structure modulus
limit.

The main message here is that structure of the conifold expansion is uni-
versal. For all cases of Calabi–Yau spaces, the Picard–Fuchs equation around
z = ψ − 1 has four solutions that go like ω0 = 1 + O(z), ω1 = z + O(z2),
ω2 = z2 + O(z3) and ω4 = ω1 log(z) + O(z4). We define a dual mirror map
tD = ω1

ω0
= z + O(z2), expand the topological string amplitudes in terms of

tD and impose the following gap structure in the conifold expansion:

F
(g)
conifold = lim

z̄→0
ω

2(g−1)
0 (

1 − ψ

ψ
)g−1Pg

=
(−1)g−1B2g

2g(2g − 2)t2g−2
D

+ O(t0D). (89)

This fixes 2g − 2 coefficients in the holomorphic ambiguity.
On the other hand, we discover a rich variety of singularity structures

around the orbifold point ψ = 0. A natural symplectic basis of solutions of
the Picard–Fuchs equation (81) is picked out by the fractional powers of the
leading terms. As in the case of quintic for our purpose we only need the first
two solutions ω0, ω1. The leading behaviours are
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1. If a2 > a1, then we have ω0 = ψa1(1 + O(ψ)), ω1 = ψa2(1 + O(ψ)).
2. If a2 = a1, then we have ω0 = ψa1(1 + O(ψ)), ω1 = ω0(log(ψ) + O(ψ)).

In both the cases we can define a mirror map around the orbifold point as
s = ω1

ω0
. Using the behaviours of Kähler potential e−K ∼ ω0 and metric

Gψψ̄ ∼ ∂ψs in the holomorphic limit, we can find the asymptotic expansion
of various generators. In both the cases, a2 > a1 and a2 = a1, the leading
behaviours are non-singular:

Ap = (a2 − a1 − 1)p + O(ψ)
Bp = ap

1 + O(ψ). (90)

This can be used to fix a holomorphic ambiguity (84) relating A2 to other
generators. On the other hand, since the constant (84) can be also derived
at other singular points of the moduli space, this also serves as a consistency
check that we have chosen the correct basis of solutions ω0, ω1 at the orbifold
point.

The orbifold expansion of the topological string amplitudes are

F
(g)
orbifold = lim

ψ̄→0
ω

2(g−1)
0 (

1 − ψ

ψ
)g−1Pg ∼ Pg

ψ(1−2a1)(g−1)
(91)

We can expand the polynomial Pg around the orbifold point ψ = 0. Gener-
ically, Pg is power series of ψ starting from a constant term, so F

(g)
orbifold ∼

1/ψ(1−2a1)(g−1). Since
∑

i ai = 2 and a1 is the smallest, we know a1 ≤ 1/2
and the topological string amplitude around orbifold point is generically sin-
gular. Interestingly, we find the singular behaviour of the topological strings
around the orbifold point is not universal and falls into four classes:

1. This class includes all four cases of hypersurfaces and four other cases of
complete intersections. They are the Calabi–Yau spaces X5(15), X6(14, 2),
X8(14, 4), X10(13, 2, 5), X3,3(16), X2,2,2,2(18), X4,4(14, 22), X6,6(12, 22, 32).
For these cases the singularity at the orbifold point is cancelled by the se-
ries expansion of the polynomial Pg. The requirement of cancellation of
singularity in turn imposes

�(1 − 2a1)(g − 1) (92)

conditions on the holomorphic ambiguity in Pg. Taking into account the A-
model constant map condition and the boundary condition from conifold
expansion, we find the number of unknown coefficients at genus g is

[2a1(g − 1)]. (93)

Notice for the Calabi–Yau X2,2,2,2(18) the cancellation is trivial since in
this case a1 = 1/2 and topological strings around the orbifold point are
generically non-singular, so this does not impose any boundary conditions.
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2. This class of Calabi–Yau spaces include X4,2(16) and X6,2(15, 3). We find
the singularity at the orbifold point is not cancelled by the polynomial Pg,
but it has a gap structure that closely resembles the conifold expansion.
Namely, when we expand the topological strings in terms of the orbifold
mirror map s = ω1/ω0, we find

F
(g)
orbifold =

Cg

s2(g−1)
+ O(s0) (94)

where in our normalization convention, the constant is Cg = B2g/25g−4

(g − 1)g for the X4,2(16) model and Cg = B2g/33(g−1)4(g − 1)g for the
X6,2(15, 3) model. Since the mirror map goes like s ∼ ψa2−a1 and the Pg

is a power series of ψ, this imposes

�2(a2 − a1)(g − 1) (95)

conditions on the holomorphic ambiguity in Pg. In both cases of X4,2(16)
and X6,2(15, 3), we have a2 = 1/2, so the number of un-fixed coefficients
is the same as the models in the first class, namely

[2a1(g − 1)]. (96)

3. This class of Calabi–Yau spaces include only the Calabi–Yau X3,2,2(17).
For this model, the singularity around the orbifold point does not cancel,
so there is no boundary condition imposed on the holomorphic ambiguity
in Pg. At genus g we are simply left with g − 1 unknown coefficients.

4. This class of Calabi–Yau spaces include X4,3(15, 2) and X6,4(13, 22, 3).
For this class of models, the singularity at the orbifold point is partly
cancelled. Specifically, we find Pg/ψ

(1−2a1)(g−1) is not generically regular
at ψ ∼ 0, but Pg/ψ

(1−2a2)(g−1) is always regular. This then imposes

�(1 − 2a2)(g − 1) (97)

conditions on holomorphic ambiguity in Pg and the number of unknown
coefficients at genus g is now

[2a2(g − 1)]. (98)

It looks like we have the worst scenarios in the two models X2,2,2,2(18) and
X3,2,2(17), where we essentially get no obvious boundary conditions at the
orbifold point ψ = 0. However after a closer examination, we find some pat-
terns in the leading coefficients of the orbifold expansion as the followings.
In our normalization convention, we find the leading constant coefficients of
X2,2,2,2(18) model is

F
(g)
orbifold =

(21 · 22g−2 − 5)(−1)gB2gB2g−2

22g−3g(2g − 2)(2g − 2)!
+ O(ψ) (99)
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whereas for X3,2,2(17) model the leading coefficients are

F
(g)
orbifold =

(7 · 22g−2 − 1)B2g

24g−332g−2(g − 1)g
1

s2g−2
+ O(

1
s2g−8

) (100)

These leading coefficients provide one more boundary condition for the models
X2,2,2,2(18) and X3,2,2(17), although this is not much significant at large genus.
On the other hand, we observe the leading coefficients of X2,2,2,2(18) model are
similar to the constant map contribution of Gromov–Witten invariants except
the factor of (21·22g−2−5), whereas the leading coefficients of X3,2,2(17) model
are similar to the conifold expansion except the factor of (7 ·22g−2 −1). These
non-trivial factors cannot be simply removed by a different normalization of
variables and therefore contain useful information. In fact in the latter case
of X3,2,2(17) model, the factor of (7 · 22g−2 − 1) will motivate our physical
explanations of the singularity in a moment.

As shown in [25], see also Sect. 5, for a fixed genus g, the Gopakumar–Vafa
invariants ng

d are only non-vanishing when the degree d is bigger than ag, where
ag is a model dependent number with weak genus dependence, in particular for
large g one has dmin −1 = ag ∼ √

g. So long as the number of zeros in the low
degree Gopakumar–Vafa invariants are bigger than the number of unknown
coefficients that we determine above using all available boundary conditions,
we have a redundancy of data to compute the topological strings recursively
genus by genus and are able to make non-trivial checks of our computations.
For all of the 13 cases of one-parameter Calabi–Yau spaces, we are able to
push the computation to very high genus. So far our calculations are limited
only by the power of our computational facilities.

We now propose a “phenomenological” theory of the singularity structures
at the point with rational branching. Our underlying philosophy is that a
singularity of F (g) in the moduli space can only be generated if there are
charged massless states near this point of moduli space. This is already familiar
from the behaviours at infinity ψ = ∞ and conifold point ψ = 1. At infinity
ψ = ∞ the relevant charged states are massive D2 −D0 brane-bound states
and therefore F (g) are regular, whereas at the conifold point there is a massless
charged state from a D3 brane wrapping a vanishing three-cycle and this
generates the gap like singularity at the conifold point as we have explained.
We should now apply this philosophy to the much richer behaviour at the
orbifold point ψ = 0. We discuss the four classes of models in the same order
as mentioned above.

1. We argue for this class of models the F (g) are regular at the orbifold point
because there is no massless charged state. A necessary condition would
be that the mirror map parameter s is non-zero at the orbifold point,
since as we have learned there are D-branes wrapping cycles whose charge
and mass are measured by s. This is clear for the complete intersection
cases, namely X3,3(16), X2,2,2,2(18), X4,4(14, 22), X6,6(12, 22, 32), because
for these models the first two indices of the Picard–Fuchs equation is
degenerate a2 = a1, therefore the mirror map goes like
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s ∼ logψ → ∞ (101)

and we see that the D-branes are very massive and generate exponentially
small corrections just like the situation at infinity ψ = ∞. As for the
hypersurface cases X5(15), X6(14, 2), X8(14, 4), X10(13, 2, 5), we comment
that although naively the mirror map goes like s ∼ ψa2−a1 → 0, there is
a change of basis under which the generators are invariant as explained in
Appendix A.3 and, which could make the periods goes like ω0 ∼ ω1 ∼ ψa1 ,
therefore the mirror map becomes finite at the orbifold point. This is
also consistent with the basis at orbifold point we obtained by analytic
continuation from infinity ψ = ∞. In fact we checked that the regularity
of F (g) is not affected when we take s to be the ratio of generic arbitrary
linear combinations of the periods ωi, i = 0, 1, 2, 3.

2. We argue this class of models have a conifold like structure because of
the same mechanism we have seen for the conifold point ψ = 1. This is
consistent with the fact that the degenerate indices in these cases, e.g.
models X4,2(16) and X6,2(15, 3), are the middle indices, namely we have
a2 = a3 = 1

2 . Therefore the Picard–Fuchs equation constrains one of
periods to be a power series proportional to

ω1 ∼ ψ
1
2 (102)

Since there is another period that goes like ω0 ∼ ψa1 , the mirror map
goes like s ∼ ψ1/2−a1 → 0 and it is not possible to change the basis in a
way such that the mirror map is finite. Integrating out a charged nearly
massless particle generates the gap like conifold singularity as we have
explained.

3. For the model X3,2,2(17) we argue that there are two massless states near
the orbifold point. Since the middle indices also degenerate a2 = a3 = 1/2,
we can apply the same reasoning from the previous case and infer that
the mirror map goes like s ∼ ψ1/6 and there must be at least one charged
massless state from a D3 brane wrapping vanishing three-cycle. However
the situation is now more complicated. We do not find a gap structure in
the expansion of F (g)

orbifold and the leading coefficients differ from the usual
conifold expansion by a factor of (7 ·22g−2−1) as observed in (100). These
can be explained by postulating that there are two massless particles in
this case whose masses are m and 2m. This fits nicely with the 22g−2 power
in the intriguing factor of (7 · 22g−2 − 1) and also explains the absence
of gap structure by the possible interactions between the two massless
particles.

4. Finally, we discuss the cases of models X4,3(15, 2) and X6,4(13, 22, 3). The
indices ai are not degenerate in these cases. What makes these models
different from the hypersurface cases is the fact that the ratio a2/a1 is
now not an integer in these cases. This makes it difficult to change the
basis such that the mirror map is finite. We conjecture that the mirror map
indeed goes like s ∼ ψa2−a1 and therefore there exist massless particle(s)
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whose masses are proportional to s and who are responsible for generating
the singularity of F (g) at the orbifold point. This is consistent with our
analytic continuation analysis in Appendix A.4. We note that a necessary
non-trivial consequence of this scenario would be that the F

(g)
orbifold is no

more singular than 1/s2g−2, i.e. the product

s2g−2F
(g)
orbifold ∼ Pg

ψ(1−2a2)(g−1)
(103)

should be regular. This is precisely what we observe experimentally.

5 Symplectic Invariants at Large Radius

The coefficients of the large radius expansion of the F (g) = limt̄→∞ F (g)(t, t̄ )
have an intriguing conjectural interpretation as symplectic invariants of M .
First of all we have

F (g)(q) =
∑

β

r
(g)
β qβ , (104)

where r
(g)
β ∈ Q are the Gromow–Witten invariants of holomorphic maps.

Secondly the Gopakumar–Vafa invariants [36] count the cohomology of the
D0 −D2 bound state moduli space, see also [25], and are related to the

F(λ, t) =
∞∑

g=0

λ2g−2F (g)(t)

=
c(t)
λ2

+ l(t) +
∞∑

g=0

∑

β∈H2(M,Z)

∞∑

m=1

n
(g)
β

1
m

(

2 sin
mλ

2

)2g−2

qβm .

(105)
Here c(t) and l(t) are some cubic and linear polynomials in t, which follow
from the leading behaviour of F (0) and F (1) as explained in (37) and (20).
With qλ = eiλ we can write a product form15 for the partition function Zhol =
exp(Fhol)

Zhol
GV(M,λ, q) =

∏

β

[
( ∞∏

r=1

(1 − qr
λq

β)rn
(0)
β

)

∞∏

g=1

2g−2∏

l=0

(1 − qg−l−1
λ qβ)(−1)g+r( 2g−2

l )n
(g)
β

]
(106)

in terms of the Gopakumar–Vafa invariants n
(g)
β . Based on the partition func-

tions there is a conjectural relation of the latter to the Donaldson–Thomas

15 Here we dropped the exp(c(t)/λ2 + l(t)) factor of the classical terms at genus 0, 1.
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invariants ñ
(g)
β , which are invariants of the moduli space Ik(M,β) of ideal

sheaves I on M . Defining Zhol
DT(M, qλ, q) =

∑
β,k∈Z

ñ
(k)
β qk

λq
β one expects [57]

Zhol
GV(M, qλ, q)M(qλ)

χ(M)
2 = Zhol

DT(M,−qλ, q) , (107)

where the McMahon function is defined as M(qλ) :=
∏

n≥0 1/(1 − qn
λ)n. We

will give below the information about the F (g) in terms of the Gopakumar–
Vafa invariants and give a more detailed account of the data of the symplectic
invariants on the webpage [45].

5.1 Castelnuovo’s Theory and the Cohomology of the BPS State
Moduli Space

Let us give checks of the numbers using techniques of algebraic geometry
and the description of the BPS moduli space and its cohomology developed
in [25, 36]. The aim is to check the gap condition in various geometric set-
tings, namely hypersurfaces and complete intersections in (weighted) projec-
tive spaces discussed before. According to [25, 36] the BPS number of a given
charge, i.e. degree d, can be calculated from cohomology of the moduli space
M̂ of a D2 −D0 brane system. The latter is the fibration of the Jacobian T 2g̃

of a genus g̃ curve over its moduli space of deformations M. Curves of arith-
metic genus g < g̃ are degenerate curves, in the simplest case with δ = g̃ − g
nodes. Their BPS numbers are calculated using the Euler numbers of relative
Hilbert schemes C(i) of the universal curve (C(0) = M, C(1) is the universal
curve, etc.) in simple situations as follows:

ng
d = ng̃−δ

d = (−1)dim(M)+δ
δ∑

p=0

b(g̃ − p, δ − p)e(C(p)),

b(g, k) = 2
k! (g − 1)

∏k−1
i=1 (2g − (k + 2) + i), b(g, 0) = 0.

(108)

As explained in [25] curves in projective spaces meeting the quintic are either
plane curves in P

2, curves in P
3, or P

4. In all case one gets from Castelnuovo
theory a bound on g, which grows for large d like g(d) ∼ d2. For a detailed
exposition of curves in projective space see [58]. Using this information one can
determine which curves above is realized and contributes to the BPS numbers.
These statements generalize to the hypersurfaces and complete intersections
with one Kähler modulus in weighted projective spaces. In particular the
qualitative feature g(d) ∼ d2 of the bound for large d carries over. We note
for later convenience that to go from a smooth curve of genus g̃ to a curve
with arithmetic genus g = g̃ − δ by enforcing δ nodes we get from (108)

ng̃−1
d = (−1)dim(M)+1 (e(C) + (2g̃ − 2)e(M))

ng̃−2
d = (−1)dim(M)+1

(
e(C(2)) + (2g̃ − 4)e(C) + 1

2 (2g̃ − 2)(2g̃ − 5)e(M)
)
.

(109)
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5.2 D-Branes on the Quintic

One consequence of our global understanding of the F (g) is that we can make
detailed statements about the ‘number’ of D-brane states for the quintic at
large radius. We focus on d = 5, because there is a small numerical flaw in
the analysis of [25], while the right numerics confirms the gap structure quite
significantly. In this case the complete intersection with multidegree (1, 1, 5) is
a plane curve with genus g̃ = (d−1)(d−2)/2 = 6, while the other possibilities
have at most genus g = 2. Curves of (g = g̃, d) = (6, 5) are therefore smooth
plane curves with δ = 0 and according to (108) their BPS number is simply
ng

d = (−1)dimMe(M). Since d = 5 their moduli space is simply the moduli
space of P

2’s in P
4, M is the Grassmannian16

G(2, 4). Grassmannians G(k, n)
have dimensions (k + 1)(n − k) and their Euler number can be calculated
most easily by counting toric fixed points to be χ(G(k, n)) =

(
n+1
k+1

)
. We get

n6
5 = (−1)610 = 10.

For the (g, d) = (5, 5) curves we have to determine the Euler number of
the universal curve C, which is a fibration π : C → M over M. To get an
geometric model for C we consider the projection π̃ : C → X. The fibre over a
point p ∈ X is the set of P

2’s in P
4 which contain the point p. This is described

as the space of P
1’s in P

3, i.e. G(1, 3) with 17 χ(G(1, 3)) = 6. As the fibration
π̃ is smooth we obtain e(C) = χ(X)χ(G(1, 3)) = −200 · 6 = −1200. Applying
now (109) we get n5

5 = (−1)5(−1200 + (2 · 6 − 2)10) = 1100.
The calculation of n4

4 requires the calculation of e(C(2)). The model for
C(2) is constructed from the fibration π̂ : C(2) → Hilb2(X) as follows. A point
in Hilb2(X) are either two distinct points or one point of multiplicity 2 with
distinct tangent direction. In both cases the fiber over P ∈ Hilb2(X) is an P

2

passing though 2 points in P
4, which is a P

2. The fibration is smooth and it
remains to calculate the Euler number of the basis. There are nice product
formulas for the Euler number of symmetric products of surfaces modded out
by Sn. For surfaces it is more cumbersome. We calculate the Euler number
e(Sym2(X)) =

(−199
2

)
. Hilb2(X) is the resolution of the orbifold Sym2(X),

which has the diagonal X as fix point set. The resolution replaces each point
in the fixed point set by P

2. Simple surgery and the smooth fibration structure
of C(2) gives hence e(C(2)) = 3(e(Sym2(X) + (3 − 1)e(X)) = 58500, which by
(109) yields n4

5 = 58500 + (2 · 6 − 4)(−1200) + 35 · 10 = 49250.
The approach becomes more difficult with the number of free points δ and

at δ = 4 it is currently not known how to treat the singularities of the Hilbert
scheme.

16 The space of P
k’s in P

n , which we call G(k, n), is also the space of k +1 complex
dimensional subspaces in an n + 1 dimensional complex vector space, which is
often alternatively denote as G(k + 1, n + 1).

17
G(1, 3) is Plucker embedded in P

5 as a quadric (degree 2). From the adjunction
formula we also get χ(G(1, 3)) = 6.
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On the other hand smooth curves at the “edge” of the Castelnuovo
bound are of no principal problem. Example, using adjunction for a smooth
complete intersection of degree (d1, . . . , dr) in a (weighted) projective space
WCP

n(w1, . . . , wn+1) in Appendix A, we calculate χ = (2 − 2g) and see that
the degree 10 genus 16 curve is the complete intersection (1, 2, 5). The moduli
space is calculated by counting the independent deformations of that com-
plete intersection. The degree five constraint lies on the quintic, the linear
constraint has five parameters. The identification by the C

∗ action of the am-
bient P

4 shows that these parameters lie in a P
4. This constraint allows to

eliminate one variable from the generic quadratic constraint which has hence
10 parameters and a P

9 as moduli space. So we check in Table 2 the entry
n16

10 = (−1)135 · 10 = −50.
Let us discuss the upper bound on the genus at which we can completely

fix the Fg given simply the bound (80). We claim that this bound is g ≤ 51. At
degree 20 there is a smooth complete intersection curve (1, 4, 5) of that genus.
We first check that this is the curve of maximal genus in degree 20. The
Castelnuovos bound for curves in P

4 shows that they have smaller genus [58].
We further see from the discussion in [58] that for curves in P

3 not on quadric
and a cubic, which would have the wrong degree, the Castelnuovos’s bound is
saturated for the complete intersection (1, 4, 5). For g = 51 (80) indicates that
the gap, constant map contribution and regularity at the orbifold fixes 131 of
the 151 unknown coefficients in (55). The vanishing of n51

d = 0, 1 ≤ d ≤ 19
and the value of n51

20 = (−1)4+34χ(P4)χ(P34) = 165 for the Euler number of
the moduli space of the smooth curve give us the rest of the data.

5

10

15

20

10 20 30 40 50

degree

genus

Castelnuovo’s bound for higher genus curves on the quintic. The dashed line
correspond roughly (up to taking the floor) to the number of coefficients in fg

(55) which are not fixed by constant map contribution, conifold and orbifold
boundary conditions.

It is of course no problem to calculate form the B-model the higher genus
amplitudes to arbitrary degree. For completeness we report the first non-trivial
numbers for g = 18 − 20 in Table 3.



Topological String Theory on Compact Calabi–Yau 81

T
a
b
le

2
.

B
P

S
in

va
ri

a
n
ts

n
g d

o
n

th
e

Q
u
in

ti
c

h
y
p
er

su
rf

a
ce

in
P

4
.
S
ee

a
ls

o
T
a
b
le

3

g
d
=

1
d
=

2
d
=

3
d
=

4
d
=

5
d
=

6

0
2
8
7
5

6
0
9
2
5
0

3
1
7
2
0
6
3
7
5

2
4
2
4
6
7
5
3
0
0
0
0

2
2
9
3
0
5
8
8
8
8
8
7
6
2
5

2
4
8
2
4
9
7
4
2
1
1
8
0
2
2
0
0
0

1
0

0
6
0
9
2
5
0

3
7
2
1
4
3
1
6
2
5

1
2
1
2
9
9
0
9
7
0
0
2
0
0

3
1
1
4
7
2
9
9
7
3
3
2
8
6
5
0
0

2
0

0
0

5
3
4
7
5
0

7
5
4
7
8
9
8
7
9
0
0

8
7
1
7
0
8
1
3
9
6
3
8
2
5
0

3
0

0
0

8
6
2
5

−
1
5
6
6
3
7
5
0

3
1
5
6
4
4
6
1
6
2
8
7
5

4
0

0
0

0
4
9
2
5
0

−
7
5
2
9
3
3
1
7
5
0

5
0

0
0

0
1
1
0
0

−
3
0
7
9
1
2
5

6
0

0
0

0
1
0

−
3
4
5
0
0

7
0

0
0

0
0

0

g
d
=

7
d
=

8
d
=

9

0
2
9
5
0
9
1
0
5
0
5
7
0
8
4
5
6
5
9
2
5
0

3
7
5
6
3
2
1
6
0
9
3
7
4
7
6
6
0
3
5
5
0
0
0
0

5
0
3
8
4
0
5
1
0
4
1
6
9
8
5
2
4
3
6
4
5
1
0
6
2
5
0

1
7
1
5
7
8
4
0
6
0
2
2
8
8
0
7
6
1
7
5
0

1
5
4
9
9
0
5
4
1
7
5
2
9
6
1
5
6
8
4
1
8
1
2
5

3
2
4
0
6
4
4
6
4
3
1
0
2
7
9
5
8
5
6
5
7
0
0
8
7
5
0

2
5
1
8
5
4
6
2
5
5
6
6
1
7
2
6
9
6
2
5

2
2
5
1
6
8
4
1
0
6
3
1
0
5
9
1
7
7
6
6
7
5
0

8
1
4
6
4
9
2
1
7
8
6
8
3
9
5
6
6
5
0
2
5
6
0
1
2
5

3
1
1
1
4
6
8
9
2
6
0
5
3
0
2
2
7
5
0

1
3
0
3
4
6
4
5
9
8
4
0
8
5
8
3
4
5
5
0
0
0

9
5
2
3
2
1
3
6
5
9
1
6
9
2
1
7
5
6
8
9
9
1
5
0
0

4
2
4
5
4
7
7
4
3
0
6
1
5
2
5
0

2
5
5
1
7
5
0
2
2
5
4
8
3
4
2
2
6
7
5
0

5
0
7
7
2
3
4
9
6
5
1
4
4
3
3
5
6
1
4
9
8
2
5
0

5
−

1
9
1
7
9
8
4
5
3
1
5
0
0

4
6
5
6
9
8
8
9
6
1
9
5
7
0
6
2
5

1
0
2
8
0
7
4
3
5
9
4
4
9
3
1
0
8
3
1
9
7
5
0

6
1
3
0
0
9
5
5
2
5
0

−
4
7
1
8
5
2
1
0
0
9
0
9
5
0
0

3
0
8
8
4
1
6
4
1
9
5
8
7
0
2
1
7
2
5
0

7
4
8
7
4
0
0
0

2
8
7
6
3
3
0
6
6
1
1
2
5

−
1
3
5
1
9
7
5
0
8
1
7
7
4
4
0
7
5
0

8
0

−
1
6
7
0
3
9
7
0
0
0

1
9
3
7
6
5
2
2
9
0
9
7
1
1
2
5

9
0

−
6
0
9
2
5
0
0

−
1
2
7
3
5
8
6
5
0
5
5
0
0
0

1
0

0
0

1
8
7
6
3
3
6
8
3
7
5

1
1

0
0

5
5
0
2
7
5
0

1
2

0
0

6
0
3
7
5

1
3

0
0

0

(c
o
n
ti

n
u
ed

)



82 M.-x. Huang et al.

T
a
b
le

2
.

(c
o
n
ti

n
u
ed

)

g
d
=

1
0

d
=

1
1

0
7
0
4
2
8
8
1
6
4
9
7
8
4
5
4
6
8
6
1
1
3
4
8
8
2
4
9
7
5
0

1
0
1
7
9
1
3
2
0
3
5
6
9
6
9
2
4
3
2
4
9
0
2
0
3
6
5
9
4
6
8
8
7
5

1
6
6
2
8
6
3
7
7
4
3
9
1
4
1
4
0
9
6
7
4
2
4
0
6
5
7
6
3
0
0

1
3
3
6
4
4
2
0
9
1
7
3
5
4
6
3
0
6
7
6
0
8
0
1
6
3
1
2
9
2
3
7
5
0

2
2
6
1
9
1
0
6
3
9
5
2
8
6
7
3
2
5
9
0
9
5
5
4
5
1
3
7
4
5
0

7
7
5
7
2
0
6
2
7
1
4
8
5
0
3
7
5
0
1
9
9
0
4
9
6
9
1
4
4
9
7
5
0

3
5
2
9
3
9
9
6
6
1
8
9
7
9
1
6
6
2
4
4
2
0
4
0
4
0
6
8
2
5

2
4
5
7
4
9
6
7
2
9
0
8
2
2
2
0
6
9
9
9
9
6
1
1
5
2
7
6
3
4
7
5
0

4
5
6
4
6
6
9
0
2
2
3
1
1
8
6
3
8
6
8
2
9
2
9
8
5
6
6
0
0

4
4
8
4
7
5
5
5
7
2
0
0
6
5
8
3
0
7
1
6
8
4
0
3
0
0
4
7
5
3
7
5

5
3
0
2
6
5
3
0
4
6
3
6
0
8
0
2
6
8
2
7
3
1
2
9
7
8
7
5

4
6
9
5
0
8
6
6
0
9
4
8
4
4
9
1
3
8
6
5
3
7
1
7
7
6
2
0
0
0
0

6
6
9
4
8
7
5
0
0
9
4
7
4
8
6
1
1
3
8
4
9
6
2
7
3
0

2
6
7
7
8
9
7
6
4
2
1
6
8
4
1
7
6
0
1
6
8
6
9
1
3
8
1
6
2
5

7
4
0
1
7
9
5
1
9
9
9
6
1
5
8
2
3
9
0
7
6
8
0
0

7
3
5
7
0
9
9
2
4
2
9
5
2
0
7
0
2
3
8
7
0
8
8
7
0
0
0
0

8
−

2
5
3
0
1
0
3
2
7
6
6
0
8
3
3
0
3
1
5
0

7
2
7
4
2
6
5
1
5
9
9
3
6
8
0
0
2
8
9
7
7
0
1
2
5
0

9
1
1
5
5
5
9
3
0
6
2
7
3
9
2
7
1
4
2
5

1
4
0
9
6
5
9
8
5
7
9
5
7
3
2
6
9
3
4
4
0
0
0
0

1
0

−
1
7
9
7
6
2
0
9
5
2
9
4
2
4
7
0
0

7
2
2
8
5
0
7
1
2
0
3
1
1
7
0
0
9
2
0
0
0

1
1

1
5
0
4
4
4
0
9
5
7
4
1
7
8
0

−
1
8
9
9
8
9
5
5
2
5
7
4
8
2
1
7
1
2
5
0

1
2

−
4
5
4
0
9
2
6
6
3
1
5
0

3
5
3
6
5
0
2
2
8
9
0
2
7
3
8
5
0
0

1
3

5
0
5
3
0
3
7
5

−
4
0
4
1
7
0
8
7
8
0
3
2
4
5
0
0

1
4

−
2
8
6
6
5
0

2
2
5
6
2
3
0
6
4
9
4
3
7
5

1
5

−
5
7
0
0

−
2
9
9
3
8
0
1
3
2
5
0

1
6

−
5
0

−
7
3
5
7
1
2
5

1
7

0
−

8
6
2
5
0

1
8

0
0



Topological String Theory on Compact Calabi–Yau 83

Table 3. Some higher degree genus 18–20 BPS numbers for the quintic. Note that
we can calculate all Donaldson–Thomas invariants for d = 1, . . . , 12 exactly

d g=18 g=19
...

...
...

11 0 0
12 −3937166500 −13403500
13 285683687197594125 −2578098061480250
14 −95076957496873268057250 2730012506820193210000
15 6438165666769014564325336250 −342304337102629200272769700
16 15209062594213864261318125134875 15209062594213864261318125134875

d g=20
...

...
11 0
12 0
13 10690009494250
14 −59205862559233156250
15 15368486208424999875838025
16 −1036824730393980503709247290500

5.3 D-Brane States on Hypersurfaces in Weighted
Projective Space

Similarly, for the sextic in P
4(14, 2), the degree (1, 2, 6) complete intersection

curve has genus g = 10 and degree d =
∏

i di/
∏

k wk = 6 in the weighted
projective space. Its moduli space is P

3 for the degree one constraint, i.e. we
can eliminate x4 form the quadric and the seven coefficeints of the monomials
x2

1, x1x2, x1x3, x
2
2, x2x3, x

2
3, x5 form a P

6. This yields n10
6 = (−1)94 · 7 = −28

in Table 4.
There are further checks for the P

4(14, 4) invariants listed in Table 5. The
complete intersection (12, 8) has total degree 2 and genus g = 3. The two
linear constraints describe a P

1 in P
3, i.e. an G(1, 3) with Euler number 6

and dimension 4, which yields n3
2 = 6. Similarly we have a g = 7 complete

intersection (1, 2, 8) of degree 4, whose moduli space is P
3 times P

5 hence
n7

4 = 24.
For the degree 10 hypersurface in P

4(13, 2, 5) we check the BPS invariants
listed in Table 6: From the degree (1, 1, 10) hypersuface of degree 1 complete
intersection with g = 2. The moduli space of the linear constraints are just the
one of point in P

2, i.e. P
2, hence n2

1 = 3. The degree (1, 2, 10) complete inter-
section with total degree 2 and genus 4 has the moduli space of the linear con-
straint, which is P

2 and of the quadratic constraint is P
3 (from the coefficients

of the monomials x2
1, x1x2, x

2
2, x4), yielding n4

2 = −12. Finally the (1, 3, 10)
complete intersection with genus 7 and degree 3, has a moduli space P

2 times
P

5 (from the coefficients of the monomials x3
1, x

2
1x2, x1x

2
2, x1x4, x

3
2, x2x4) and

n7
3 = −18.
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Table 5. BPS invariants ng
d on the Octic hypersurface in P

4(14, 4)

g d=1 d=2 d=3 d=4 d=5

0 29504 128834912 1423720546880 23193056024793312 467876474625249316800
1 0 41312 21464350592 1805292092705856 101424054914016355712
2 0 864 −16551744 12499667277744 5401493537244872896
3 0 6 −177024 −174859503824 20584473699930496
4 0 0 0 396215800 −674562224718848
5 0 0 0 301450 12063928269056
6 0 0 0 4152 −86307810432
7 0 0 0 24 37529088
8 0 0 0 0 354048
...

...
...

...
...

Table 6. BPS invariants ng
d on the degree 10 hypersurface in P

4(13, 2, 5)

g d=1 d=2 d=3 d=4

0 231200 12215785600 1700894366474400 350154658851324656000
1 280 207680960 161279120326840 103038403740897786400
2 3 −537976 1264588024791 8495973047204168640
3 0 −1656 −46669244594 61218893443516800
4 0 −12 630052679 −2460869494476896
5 0 0 −1057570 145198012290472
6 0 0 −2646 −5611087226688
7 0 0 −18 125509540304
8 0 0 0 −1268283512
...

...
...

...
...

These checks in different geometrical situations establish quite impressively
the universality of the gap structure at the conifold expansion.

5.4 D-Branes on Complete Intersections

Here we summarize our results on one modulus complete intersections in
(weighted) projective space. More complete results are available in [45]. Again
we can check many BPS invariants associated with the smooth curves.

Let us check, e.g. in Table 7 the n10
9 = 15. According to (114) we see that at

degree 9 there is a smooth genus 10 curve, given by a complete intersection of
multi degree (12, 32) in P

5. Their moduli space is the Grassmannian G(3, 5),
which has Euler number 15 and dimension 8, hence n10

9 = 15. In a very
similar way it can be seen that the n9

8 comes form a complete intersection
curve of degree (4, 2, 12) with the same moduli space, so n9

8 = 15 in Table 8.
Grassmannians related to complete intersection are also identified with the
moduli spaces of the following smooth curves: The total degree six curve of
genus 7 in Table 11 is a CI of multi degree (12, 3, 4). Its moduli space is a
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Table 7. ng
d for the degree (3,3) complete intersection in P

5

g d=1 d=2 d=3 d=4 d=5 d=6

0 1053 52812 6424326 1139448384 249787892583 62660964509532
1 0 0 3402 5520393 4820744484 3163476682080
2 0 0 0 0 5520393 23395810338
3 0 0 0 0 0 6852978
4 0 0 0 0 0 10206
5 0 0 0 0 0 0

g d=7 d=8 d=9

0 17256453900822009 5088842568426162960 1581250717976557887945
1 1798399482469092 944929890853230501 473725044069553679454
2 42200615912499 50349477671013600 47431893998882182563
3 174007524240 785786604262830 1789615720312984368
4 −484542 2028116431098 21692992151427138
5 158436 −784819773 36760497856020
6 0 372762 −61753761036
7 0 6318 −5412348
8 0 0 39033
9 0 0 1170

10 0 0 15
11 0 0 0

G(2, 4) explaining n7
6 = 10. The degree 4 curve of genus 5 in Table 12 is

of multi degree (12, 42) and has moduli space G(1, 3) yielding n5
4 = 6. The

degree 4 curve of genus 5 in Table 13 is of multi degree (12, 2, 6) and has moduli
space G(2, 4) yielding n5

4 = 10. The degree 2 curve of genus 3 in Table 14 is

Table 8. ng
d for the degree (4,2) complete intersection in P

5

g d=1 d=2 d=3 d=4 d=5 d=6

0 1280 92288 15655168 3883902528 1190923282176 417874605342336
1 0 0 0 −672 16069888 174937485184
2 0 0 0 −8 7680 12679552
3 0 0 0 0 0 276864
4 0 0 0 0 0 0

g d=7 d=8 d=9

0 160964588281789696 66392895625625639488 28855060316616488359936
1 19078577926517760 14088192680381290336 9895851364631438617600
2 494602061689344 853657285175383648 1137794220513866498304
3 2016330670592 14859083841009280 49286012311292922368
4 −285585152 37334304102560 679351051885623552
5 591360 −46434384200 1103462757073920
6 7680 −8285120 −4031209095680
7 0 67208 370290688
8 0 1520 −2270720
9 0 15 −25600

10 0 0 0
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of multi degree (12, 4, 6) and has moduli space G(0, 2) = P
2 yielding n3

2 = 3.
The moduli space of the degree 4 genus 7 curve (1, 2, 4, 6) is an P

2 times the
moduli space P

4 of quadrics in WCP
3(12, 22), so that n7

4 = (−1)63 · 5 = 15.
For the degree (6, 6) complete intersection in WCP

3(12, 22, 32), see Table 15,
we have a degree 1 genus 2 intersection (12, 62), whose moduli space is a point
hence n2

1 = 1, a degree 2 genus 4 intersection (1, 2, 62), whose moduli space
is P

1 times the moduli space P
2 of quadrics in WCP

2(1, 22) hence n4
2 = −6,

a degree 3 genus 7 intersection (1, 3, 62), whose moduli space is P
1 times the

moduli space P
4 of cubics in WCP

4(1, 22, 32) hence n7
3 = −10 and finally a

degree 4 genus 11 intersection (1, 4, 62), whose moduli space is P
1 times the

moduli space P
5 of quadrics in WCP

4(1, 22, 32) hence n11
4 = 12.

There are many further checks that are somewhat harder to perform.
Example, we note that there is a genus 1 degree 3 curve in the (3, 2, 2) CI in
P

6, which comes from a complete intersection (14, 3). Now the moduli space
of this complete intersection in P

6 is G(2, 6). However not all P
2 parametrized

by G(2, 6), which contain the cubic, are actually in the two quadrics of the
(3, 2, 2) CICY. We can restrict to those P

2, which fulfil these constraints,
by considering the simultaneous zeros of sections of two rank six bundles of
quadratic forms on the moving P

2. These are a number of points, which is
calculated by the integral of the product of the Chern classes of these rank 6
bundles over G(2, 6). Indeed we obtain, for example with “Schubert” [59]

n1
3 = (−1)0

∫

G(2,6)

c26(Sym(2, Q)) = 64, (110)

which confirms the corresponding entry in Table 9.

Table 9. ng
d for the (3,2,2) complete intersection in P

6

g d=1 d=2 d=3 d=4 d=5 d=6

0 720 22428 1611504 168199200 21676931712 3195557904564
1 0 0 64 265113 198087264 89191835056
2 0 0 0 0 10080 180870120
3 0 0 0 0 0 −3696
4 0 0 0 0 0 −56
5 0 0 0 0 0 0

g d=7 d=8 d=9

0 517064870788848 89580965599606752 16352303769375910848
1 32343228035424 10503104916431241 3201634967657293024
2 315217101456 280315384261560 178223080602086784
3 199357344 1430336342574 2915033921871456
4 30240 194067288 8888143990672
5 0 795339 −233104896
6 0 0 4857552
7 0 0 384
8 0 0 0
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6 Conclusions

In this chapter we solve the topological string B-model on compact Calabi–
Yau M using the modularity of the Fg, the wave function transformation
property of Z and the boundary information imposed by effective action con-
siderations. The method pushes the calculation to unprecedented high genus
amplitudes, e.g. for the quintic the boundary condition count (80) together
with the simplest vanishing arguments at large volume fixes the amplitudes
up to genus g = 51. Beyond that the prime mathematical problem to over-
come in this region of the moduli space is to understand the degeneration of
more then four points in the relative Hilbert scheme of the universal curves
in a threefold.18 Similar problems have been encountered in [60], where it
was suggested to fix a very similar ambiguity to a anholomorphic SL(2,Z)-
modular elliptic index of a D4 − D2 − D0 brane system [60, 61, 62]. There
one uses SL(2,Z) invariance of the index and a dual dilute gas approximation
in AdS3 × S2 × M to fix the coeffcients of the ring of modular forms. The
construction of the moduli-space of the D4 −D2 −D0 brane system uses ra-
tional GW invariants and implies non-trivial relations among them [60]. Such
considerations could in principal provide further boundary conditions at large
radius.

Our sharpest tool is the global control of Z over M(M) and we expect that
by a closer analysis of the RR-spectrum at the orbifold of compact Calabi–Yau,
we will be able to recover at least the �2/d(g − 1) conditions that one loses
relative to the local cases [13] and solve the model completely. We obtained
not only the Gromov–Witten, the Donaldson–Thomas and Gopakumar–Vafa
invariants at infinity, but also the local expansion at the conifold, the Gepner
point and other more exotic singularities with one or more massless states.
The leading singular terms in the effective action reflect the massless states.
The branch locus of the 13 parameter models has an intriguing variety of such
light spectra and we can learn from the effective action about the singularity
and vice versa. Stability properties of theses states have been analysed in
Appendix A.4.

Most importantly our exact expansions do contain further detailed infor-
mation of the towers massive RR-states at these points. We described them
in natural local variables. The information from different genera should be
of great value for the study of stable even D-brane bound states on compact
Calabi–Yau as it is the content of the supersymmetric index of [36], which is
protected under deformations of the complex structure. Non-compact Calabi–
Yau such as the resolution of C

n/G, with G ∈ SL(n,C) have no complex
moduli. The issue does not arise and the situation is better understood, e.g.
see [63, 64] for reviews.

18 As a motivation and check for the task to develop the theory of Hilbert schemes
for 3folds we calcultated the invariants explicitly to high genus. For the quintic
to genus 20 and for all other the results up genus 12 are available at [45].
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Table 11. ng
d for the degree (4,3) complete intersection in WCP

5(15, 2)

g d=1 d=2 d=3 d=4 d=5 d=6

0 1944 223560 64754568 27482893704 14431471821504 8675274727197720
1 0 27 161248 381704265 638555324400 891094220317561
2 0 0 0 227448 3896917776 20929151321496
3 0 0 0 81 155520 75047188236
4 0 0 0 0 5832 −40006768
5 0 0 0 0 0 26757
6 0 0 0 0 0 816
7 0 0 0 0 0 10
8 0 0 0 0 0 0

Table 12. ng
d for the degree (4,4) complete intersection in WCP

5(14, 22)

g d=1 d=2 d=3 d=4 d=5 d=6

0 3712 982464 683478144 699999511744 887939257620352 1289954523115535040
1 0 1408 6953728 26841854688 88647278203648 266969312909257728
2 0 0 3712 148208928 2161190443904 17551821510538560
3 0 0 0 −12432 7282971392 362668189458048
4 0 0 0 384 −14802048 773557598272
5 0 0 0 6 −22272 −7046285440
6 0 0 0 0 0 6367872
7 0 0 0 0 0 11264
8 0 0 0 0 0 0

One can also use the explicit expansions to study the integrable theories
that have been associated with the local expansion of the topological string
on Calabi–Yau manifold, such as the c = 1 string at the conifold or the quiver
gauge theories at the orbifold, matrix models, e.g. at the ADE singularities
and new ones for more exotic singularities such as the branch points of the
complete intersections Calabi–Yau manifolds that we discussed here.

The ability to obtain the imprint of the BPS spectrum on the effective
action everywhere on the moduli space is of phenomenological interest as flux
compactifications drive the theory to attractor points inside the moduli space.

Our expressions are governed by the representation of the modular group of
the Calabi–Yau on almost holomorphic forms, which we explicitly constructed
from the periods, without having much of an independent theory about them.
The simpler case of the torus suggests that such forms and their extensions
should play a role in the study of virtually any physical amplitude–open or
closed–in compactifications on the Calabi–Yau space, even as conjectured in
the hypermultiplet sector [65].

One may finally wonder whether the topological string B-model is an in-
tegrable theory that is genuinely associated with this new and barely ex-
plored class of modular forms on Calabi–Yau spaces moduli spaces, whereas
most known integrable models are associated with abelian varieties. As it



Topological String Theory on Compact Calabi–Yau 91

T
a
b
le

1
3
.

n
g d

fo
r

th
e

d
eg

re
e

(6
,2

)
co

m
p
le

te
in

te
rs

ec
ti

o
n

in
W

C
P

5
(1

5
,3

)

g
d
=

1
d
=

2
d
=

3
d
=

4
d
=

5
d
=

6

0
4
9
9
2

2
3
8
8
7
6
8

2
7
3
2
0
6
0
0
3
2

4
5
9
9
6
1
6
5
6
4
2
2
4

9
5
7
9
7
1
3
8
4
7
0
6
6
2
4
0

2
2
8
3
9
2
6
8
0
0
2
3
7
4
1
6
3
6
1
6

1
0

−
5
0
4

1
2
2
8
0
3
2

7
9
2
7
5
6
6
4
8
0
0

6
3
3
0
7
4
0
1
0
4
3
5
8
4
0

3
6
6
6
1
8
2
3
5
1
8
4
2
3
3
8
4
0
8

2
0

−
4

1
4
9
7
6

−
1
3
0
9
8
6
8
8

3
9
2
1
8
3
5
4
3
0
0
1
6

1
2
8
6
1
4
8
3
7
5
0
3
1
4
3
5
3
2

3
0

0
0

8
7
3
7
6

−
5
7
3
1
7
5
1
1
6
8

4
8
2
4
0
7
0
3
3
5
2
9
8
8
0

4
0

0
0

1
4
5
6

−
7
0
9
8
6
2
4

−
3
9
7
8
4
5
2
4
6
3
0
1
2

5
0

0
0

1
0

−
5
9
9
0
4

1
7
7
6
3
4
1
0
7
2

6
0

0
0

0
0

1
8
6
8
0
3
4
4

7
0

0
0

0
0

−
7
1
7
6

8
0

0
0

0
0

−
3
6

9
0

0
0

0
0

0



92 M.-x. Huang et al.

Table 14. ng
d for the degree (6,4) complete intersection in WCP

5(13, 22, 3)

g d=1 d=2 d=3 d=4 d=5

0 15552 27904176 133884554688 950676829466832 8369111295497240640
1 8 258344 5966034472 126729436388624 2512147219945401752
2 0 128 36976576 4502079839576 264945385369932352
3 0 3 −64432 15929894952 9786781718701824
4 0 0 −48 −272993052 42148996229312
5 0 0 0 800065 −592538522344
6 0 0 0 1036 14847229472
7 0 0 0 15 −148759496
8 0 0 0 0 160128
9 0 0 0 0 96

10 0 0 0 0 0

Table 15. ng
d for the degree (6,6) complete intersection in WCP

5(12, 22, 32)

g d=1 d=2 d=3 d=4

0 67104 847288224 28583248229280 1431885139218997920
1 360 40692096 4956204918600 616199133098321280
2 1 291328 254022248925 102984983365762128
3 0 −928 1253312442 6925290146728800
4 0 −6 −39992931 104226246583368
5 0 0 867414 −442845743788
6 0 0 −1807 53221926192
7 0 0 −10 −3192574724
8 0 0 0 111434794
9 0 0 0 −1752454

10 0 0 0 3054
11 0 0 0 12
12 0 0 0 0

was noted in [14, 28, 29] in the complex moduli space extended by the dila-
ton, called extended phase space, one has rigid special Kähler geometry and
many aspects of the sympletic transformations and its metaplectic realiza-
tion are easily understood in the extended phase space. There are two maps
Φ(i) : M → T

(k)
IJ , I, J = 1, . . . , h3/2 from the complex moduli space to ten-

sors in the extended phase space on which
(
A B
C D

)

∈ Sp(h3,Z) acts pro-

jectively like T (k) 
→ (AT (k) + B)(CT k + D)−1. For the holomorphic ob-
ject τIJ = ∂I∂JF

(0) =: T (1)
IJ (t), which is mostly discussed in this context of

the metaplectic transfomations [14, 28, 29], Im(τ) is indefinite, while for the
non-holomorphic object NIJ = τ̄IJ + 2iImτIKXKImτILX

L/XLImτKLX
L =:

T
(2)
IJ (t, t̄) comes from the kinetic term in the 10d action whose reduction in-

volves the Hodge-star on M . Its imaginary part Im(N ) > 0 is the kinetic term
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for the vector multiplets and is hence positive definite. In other words ImΦ(2)

defines a map to the Siegel upper space. Φ(2) should relate Siegel modular
forms for admittedly very exotic subgroups [24] of Sp(4,Z) to Calabi–Yau
amplitudes. Such Siegel modular forms for abelian varieties are also associ-
ated with N = 2 Seiberg–Witten (gauge) theories, while the modular forms
on Calabi–Yau studied in this underline N = 2 exact terms in N = 2 su-
pergravity. The map Φ(2) could be a manifestation of a gravity-gauge theory
correspondence for 4d theories with N = 2 supersymmetry.

It is no principal problem to generalize this to multi-moduli Calabi–Yau
as long as the Picard–Fuchs equations are known. These have different, more
general singularities with interesting local effective actions. In K3 fibrations
which have at least two moduli, the modular properties are much better under-
stood and in fact the ambiguity in the fibre is completely fixed by heterotic
string calculations, see [69] for recent progress. Moreover these cases have
N = 2 field theory limits, which contain further information, which might be
sufficient to solve these models [66].

A Appendices

A.1 Classical Intersection Calculations Using the Adjunction
Formula

The adjunction formula19 for the total Chern class of a for dimension m = n−r
smooth complete intersections M of multi degree d1, . . . , dr in a weighted
projective space WCP

n(w1, . . . , wn+1) is

c(TM ) =
∑

i

ci(TM ) =
c(TWCP)
c(N )

=
∏n+1

i=1 (1 + wiK)
∏r

k=1(1 + dkK)
=

∑

i

ciK
i , (111)

where c(TWCP) =
∑

i ci(TWCP) =
∏n+1

i=1 (1+wiK) is the total Chern class of the
weighted projective space, K is its Kähler class and c(N ) =

∏r
k=1(1 + dkK)

is the total Chern class of the normal bundle.
Integration of a top form ω = xJm with J = K|M over M is obtained by

integration along the normal direction as

∫

M

ω =
∫

WCP

ω ∧ cr(N ) =
x

∏n+1
k=1 wk

r∏

k=1

dk . (112)

Here we used the normalization
∫

WCP
Kn = 1∏n+1

k=1 wk
. This yields the first line

below:

19 See [67] for a pedagogical account of these matters.
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κ =
∫

M

Jm =
∏r

k=1 dk
∏r+1

i=1 wi

(113)

χ =
∫

M

c3(TM ) =
c3

∏n+1
k=1 wk

r∏

k=1

dk (114)

c =
1
24

∫

M

c2 ∧ J =
1
24

c2
∏n+1

k=1 wk

r∏

k=1

dk (115)

a =
1
2

∫

M

i∗c1(D) ∧ J =
1
2

∫

WCP

c(TM )
(1 + J)

∧ Jr+1

=
coeff

(
c(TM )
(1+J) , J

m−1
)

2 ·
∏n+1

k=1 wk

(116)

Combining (111, 112) one gets the line 2 and 3. The leading t terms in F0 can
be obtained by calculating Z(M) using (38), while the last line follows from
the calculation of Z(D) assuming that the D4-brane is supported on D the
restriction of the hyperplane class20 of WCP to M and the Gysins formula for
smooth embeddings [67].

A.2 Tables of Gopakumar–Vafa Invariants

We list the tables of BPS invariants for all the Calabi–Yau models computed
in this chapter.

A.3 Invariance of the Generators Under a Change of the Basis

We have seen that the topological strings can be written as polynomials of the
generators v1 , v2, v3 and X. In the holomorphic limit, these generators can
be computed from the first two solutions ω0, ω1 of the Picard–Fuchs equation.
In the following we prove that under an arbitrary linear change of basis in the
space spanned by ω0 and ω1, these generators and therefore the topological
strings are actually invariant. This is true anywhere in the moduli space. In
particular, this partly explains why the gap structure in the conifold expansion
is not affected by a change of basis of ω0 as we observed in all cases.

Since X = 1
1−ψ is independent of the basis ω0 and ω1 , it is trivially

invariant. In the holomorphic limit, The Kahler potential and metric go like
e−K ∼ ω0 and Gψψ̄ ∼ ∂ψt, where t = ω1/ω0 is the mirror map. The generators
u and vi are related to Ai and Bi, which we recall were defined as

Ap :=
(ψ∂ψ)pGψψ̄

Gψψ̄

, Bp :=
(ψ∂ψ)pe−K

e−K
, (p = 1, 2, 3, · · · ) (117)

20 a is physically less relevant, as it does not affect the effective action. Its value
a = 11

2
obtained for the quintic from (116) checks with [30].
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So a different normalization of basis ω0 of ω1, as well as a change of basis
in ω1 → ω1 + b1ω0 obviously do not change the generators Ai and Bi, and
therefore the generators u and vi are also invariant.

We now tackle the remaining less trivial situation, namely a change of
basis in ω0 as the following

ω0 → ω̃0 = ω0 + b1ω1 (118)

where b1 is an arbitrary constant. We denote the Kähler potential, metric,
mirror map and various generators in the new basis by a tilde symbol. It is
straightforward to relate them to variables in the original basis. We find the
following relations for the mirror map

s =
ω1

ω̃0
=

t

1 + b1t

∂ψs =
∂ψt

(1 + b1t)2
(119)

and the generators A and B

Ã =
ψ∂ψG̃ψψ̄

G̃ψψ̄

= A− 2b1ψ∂ψt

1 + b1ψ

B̃ =
ψ∂ψω̃0

ω̃0
= B +

b1ψ∂ψt

1 + b1ψ
(120)

So we find the generators A and B, as well as the generator u = B are not
invariant under the change of basis (118). However, we recall the generator v1

is defined as

v1 = 1 + A + 2B (121)

Using the equations in (120) we find the generator v1 is invariant, namely
ṽ1 = v1. To see v2 and v3 are invariant, we use the derivative relations

ψ∂ψv1 = −v2
1 − 2v2 − (1 + r0)X + v1X (122)

ψ∂ψv2 = −v1v2 + v3 (123)

where r0 is a constant that appears in the relation of generator A2 to lower
generators. These derivative relations are exact and independent of the choice
of the basis in asymptotic expansion. We have shown that v1 and X in the first
equations (122) are invariant under a change of the basis (118), therefore the
generator v2 appearing on the right-hand side must be also invariant. Applying
the same logic to the second equation (123) we find that the generator v3 is
also invariant.

Our proof explains why a change of basis like (118) does not change the gap
structure around the conifold point and seems to be related to the SL2 orbit



96 M.-x. Huang et al.

theorem of [53, 54]. Under a change of basis, the mirror map at the conifold
point is t̃D = ω0tD

ω̃0
and has the asymptotic leading behaviour t̃D ∼ tD ∼ O(ψ).

Recall in the holomorphic limit, the conifold expansion is

F
(g)
conifold = ω

2(g−1)
0 (

1 − ψ

ψ
)g−1Pg(v1, v2, v3,X). (124)

As we have shown the generators vi and therefore Pg are invariant, so in the
new basis

F̃
(g)
conifold = (

ω̃0

ω0
)2(g−1)F

(g)
conifold = (

tD

t̃D
) 2(g−1)F

(g)
conifold. (125)

It is clear if there is a gap structure in one basis F
(g)
conifold = (−1)g−1B2g

2g(2g−2)t2g−2
D

+

O(t0D), the same gap structure will be also present in the other basis,

F̃
(g)
conifold =

(−1)g−1B2g

2g(2g − 2)t̃ 2g−2
D

+ O(t̃ 0
D ). (126)

The asymptotic expansion in sub-leading terms O(t0D) and O(t̃0D) will be
different and can be computed by the relation between tD and t̃D.

Around the conifold point there is another power series solution to the
Picard–Fuchs equation that goes like ω2 ∼ O(ψ2). We also observe that the
gap structure is not affected by a change of the basis

ω0 → ω0 + b2ω2 (127)

It appears to be much more difficult to prove this observation, since now the
generator vi is not invariant under this change of basis. A proof of our observa-
tion would depend on the specific details of the polynomial Pg and probably
requires a deeper conceptual understanding of the conifold expansion. We
shall leave this for future investigation.

A.4 Symplectic Basis, Vanishing Cycles and Massless Particles

We can study in more details the analytic continuation of the symplectic basis
of the periods to the orbifold point ψ = 0. For the four hypersurface cases
and two other complete intersection models X4,3(15, 2) and X6,2(13, 22, 3), the
indices ai (i = 1, 2, 3, 4) of the Picard–Fuchs equation are not degenerate at the
orbifold point, so there are four power series with the leading behaviour of ψai

and the analytic continuation procedure is similar to the quintic case. In our
physical explanation of the singularity structure of higher genus topological
string amplitudes in these models, we claim that for the hypersurface cases
there is no stable massless charged state around the orbifold point, whereas for
models X4,3(15, 2) and X6,2(13, 22, 3) there are nearly massless charged states
of mass m ∼ ψa2−a1 . Since the charge and the mass of a D-brane wrapping
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cycle is determined by the mirror map parameter, which is the ratio of two
symplectic periods, it is only possible to have massless particles if there is a
rational linear combination of the periods with the leading behaviour of ψak ,
k > 1.

For a complete intersection of degree (d1, · · · , dr) in weighted projective
space WCP

n(w1, · · · , wn+1) with non-degenerate indices ak, the natural basis
of solutions at the orbifold point is

ωorb
k = ψak

∏r
i=1 Γ (diak)

∏n+1
i=1 Γ (wiak)

∞∑

n=0

(c0ψ)n

∏n+1
i=1 Γ (wi(n + ak))

∏r
i=1 Γ (di(n + ak))

, k = 1, 2, 3, 4 (128)

where c0 =
∏r

i=1 d
di
i /

∏n+1
i=1 wwi

i . We can write the sum of the series as a
contour integral21 enclosing the positive real axis and analytically continue
to the negative real axis to relate the above basis of solutions to the known
symplectic basis at infinity ψ = ∞. We find the following relation, generalizing
the result for quintic case,

ωorb
k = (2πi)4

∏r
i=1 Γ (diak)

∏n+1
i=1 Γ (wiak)

{ αkF0

1 − αk
− αkF1

(1 − αk)2

+
αk[κ(1 + αk) − 2a(1 − αk)]

2(1 − αk)3
X1

+
αk[12c(1 − αk)2 + κ(1 + 4αk + α2

k)]
6(1 − αk)4

X0} (129)

here αk = exp(2πiak) and κ, c, a are from the classical intersection calcula-
tions in Appendix A.1. We find for all cases the symplectic form and Kahler
potential have the same diagonal behaviour as the case of the quintic

ω = dFk ∧ dXk = s1dω
orb
1 ∧ dωorb

4 + s2dω
orb
2 ∧ dωorb

3 (130)

and e−K =
∑4

k=1 rkω
orb
k ωorb

k , for some constants s1, s2 and rk.
It is straightforward to invert the transformation (129) and study the

asymptotic behaviour of the geometric symplectic basis (F0, F1, X0, X1)
around the orbifold point. Generically a linear combination of the symplec-
tic periods (F0, F1,X0,X1) is proportional to the power of ψ with the lowest
index, namely, for generic coefficients c1, c2, c3, c4 we have

c1X0 + c2X1 + c3F1 + c4F0 ∼ ωorb
1 ∼ ψa1 . (131)

21 Further useful properties of the periods of the one parameter models have been
established in [68].
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In order for massless particles to appear at the orbifold point, there must be
a Sp(4,Z) transformation of the symplectic basis such that one of the periods
goes to zero faster than in the generic situation, namely we should have integer
coefficients nk ∈ Z satisfying

n1X0 + n2X1 + n3F1 + n4F0 ∼ ωorb
2 ∼ ψak , k > 1. (132)

We find (132) is impossible for three of the hypersurface cases X5(15),
X8(14, 4) and X10(13, 2, 5), but possible for the Sextic hypersurface X6(14, 2)
and the complete intersection cases X4,3(15, 2) and X6,2(13, 22, 3). Specifically,
for the Sextic hypersurface X6(14, 2), the condition for (132) with k = 2

n1 + 3n3 = 0, 3n1 + 4(n2 + n4) = 0 (133)

whereas for the complete intersections X4,3(15, 2) and X6,2(13, 22, 3), the con-
ditions for (132) are

n1 + 3n3 = 0, n1 = 4n2 + 8n4, (134)

and

n1 + 2n3 = 0, n2 +
7
24

n3 + n4 = 0. (135)

respectively.
This fact that there are massless integer charged states possible in the

models X4,3(15, 2) and X4,3(15, 2) is entirely consistent with our physical pic-
ture, which explained the singular behaviour of the F (g) form the effective
action point of view. What is very interesting is the fact that the period de-
generation at the branch point of the hypersurface models, X5(15), X6(14, 2),
X8(14, 4) and X10(13, 2, 5) is at genus zero very similar to the cases X4,3(15, 2)
and X6,2(13, 22, 3). In particular the periods of the models have no logarithmic
singularities. The leading behaviour of the higher genus expansion, which we
obtain from the global properties, indicates that the BPS states, which are pos-
sibly massless by (133, 134, 135), are stable in X4,3(15, 2) and X6,2(13, 22, 3)
models, but not stable in the X6(14, 2) model.
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Gauge Theory, Mirror Symmetry,
and the Geometric Langlands Program

A. Kapustin

California Institute of Technology, Pasadena, CA 91125, USA

Abstract. I provide an introduction to the recent work on the Montonen–Olive
duality of N = 4 super-Yang–Mills theory and the Geometric Langlands Program.

1 Introduction

The Langlands Program is a far-reaching collection of theorems and conjec-
tures about representations of the absolute Galois group in certain fields. For
a recent accessible review see [1]. V. Drinfeld and G. Laumon [2] introduced
a geometric analogue which deals with representations of the fundamental
group of a Riemann surface C, or, more generally, with equivalence classes of
homomorphisms from π1(C) to a reductive algebraic Lie group GC (which we
think of as a complexification of a compact reductive Lie group G). From the
geometric viewpoint, such a homomorphism corresponds to a flat connection
on a principal GC bundle over C. The Geometric Langlands Duality associates
to an irreducible flat GC connection a certain D-module on the moduli stack
of holomorphic LG-bundles on C. Here LG is, in general, a different compact
reductive Lie group called the Langlands dual of G. The group LG is defined
by the condition that the lattice of homomorphisms from U(1) to a maximal
torus of G be isomorphic to the weight lattice of LG. For example, the dual
of SU(N) is SU(N)/ZN , the dual of Sp(N) is SO(2N + 1), while the groups
U(N), E8, F4 and G2 are self-dual.

The same notion of duality for Lie groups appeared in the work of Goddard
et al. on the classification of magnetic sources in gauge theory [3]. These
authors found that magnetic sources in a gauge theory with gauge group G
are classified by irreducible representations of the group LG. On the basis of
this, Montonen and Olive [4] conjectured that Yang–Mills theories with gauge
groups G and LG might be isomorphic on the quantum level. Later Osborn [5]
noticed that the Montonen–Olive conjecture is more likely to hold for N = 4
supersymmetric version of the Yang–Mills theory. There is currently much
circumstantial evidence for the MO conjecture, but no proof.
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It has been suggested by Atiyah soon after the work of Goddard et al.
that Langlands duality might be related to the MO duality, but only recently
the precise relation has been found [6]. In these lectures I will try to explain
the main ideas of [6]. For a detailed derivations and a more extensive list
of references the reader is referred to the original study. I will not discuss
the ramified version of Geometric Langlands Duality; for that the reader is
referred to [7].

2 Montonen–Olive Duality

I will begin by reviewing the Montonen–Olive conjecture. Consider first non-
supersymmetric Yang–Mills theory with an action

I(A) =
∫

X

(

− 1
e2

TrF ∧  F +
iθ

8π2
TrF ∧ F

)

Here X is a Riemannian four-manifold, F = dA + A2 ∈ Ω2(ad(E)) is the
curvature 2-form of a connection A = Aμdx

μ on a principal G-bundle E
over X and G is a compact reductive Lie group. The theory has two real
parameters, e and θ. Since θ is the coefficient of a topological invariant (the
instanton number), it does not enter the classical equations of motion obtained
by varying the above action. In fact, neither does e, since the equations of
motion read

D  F = 0,

where D stands for covariant derivative. The Bianchi identity

DF = 0

is also independent of e and θ. But on the quantum level one should consider
a path integral

Z =
∑

E

∫

DA e−I(A),

and it does depend on both e and θ. Note that in quantum theory one sums
over all isomorphism classes of E.

The gauge field A can be coupled naturally to sources which transform in
a (unitary) representation R of G. These are so-called electric sources, as they
create a Coulomb-like field of the form

Aa
0 ∼ T a e2

r

where T a, a = 1,dimG, are generators of G in the representation R. Here we
took X = R × R

3, r is the distance from the origin in R
3, and we assumed
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that the worldline of the source is given by r = 0.1 It was noticed by Goddard
et al. [3] that magnetic sources are labelled by irreducible representations of
a different group which they called the magnetic gauge group. As a matter
of fact, the magnetic gauge group coincides with the Langlands dual of G, so
we will denote it LG. A static magnetic source in Yang–Mills theory should
create a field of the form

F =  3 d
( μ

2r

)
,

where μ is an element of the Lie algebra g of G defined up to adjoint action of
G and  3 is the Hodge star operator on R

3. Goddard et al. showed that μ is
“quantized”. More precisely, using gauge freedom one can assume that μ lies
in a particular Cartan subalgebra t of g, and then it turns out that μ must lie
in the coweight lattice of G, which, by definition, is the same as the weight
lattice of LG.2 Furthermore, μ is defined up to an action of the Weyl group,
so possible values of μ are in one-to-one correspondence with highest weights
of LG.

On the basis of this observation, Montonen and Olive [4] conjectured that
Yang–Mills theories with gauge groups G and LG are isomorphic on the quan-
tum level and that this isomorphism exchanges electric and magnetic sources.
Thus the Montonen–Olive duality is a non-abelian version of electric-magnetic
duality in Maxwell theory.

In order for the energy of electric and magnetic sources to transform prop-
erly under MO duality, one has to assume that for θ = 0 the dual gauge
coupling is

ẽ2 =
16π2ng

e2
.

Here the integer ng is 1, 2, or 3 depending on the maximal multiplicity of
edges in the Dynkin diagram of g [8, 9]; for simply laced groups n = 1. This
means that MO duality exchanges weak coupling (e → 0) and strong coupling
(e → ∞). For this reason, it is extremely hard to prove the MO duality
conjecture. For general θ, it is useful to define

τ =
θ

2π
+

4πi
e2

The parameter τ takes values in the upper half-plane and under MO duality
transforms as

τ → − 1
ngτ

(1)

1 One should think of A0 as an operator acting in the enlarged Hilbert space which
is the tensor product of the Hilbert space of the gauge fields and the representation
space on which T acts.

2 The coweight lattice of G is defined as the lattice of homomorphisms from U(1) to
a maximal torus T of G. The weight lattice of G is the lattice of homomorphisms
from T to U(1).
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The Yang–Mills theory has another, much more elementary symmetry, which
does not change the gauge group:

τ → τ + k.

Here k is an integer which depends on the geometry of X and G. For example,
if X = R

4, then k = 1 for all G. Together with the MO duality, these transfor-
mations generate some subgroup of PSL(2,R). In what follows we will mostly
set θ = 0 and will discuss only the Z2 subgroup generated by the MO duality.

To summarize, if the MO duality were correct, then the partition function
would satisfy

Z(X,G, τ) = Z(X, LG,− 1
ngτ

).

Of course, the partition function is not a very interesting observable. Isomor-
phism of two quantum field theories means that we should be able to match
all observables in the two theories. That is, for any observable O in the gauge
theory with gauge group G we should be able to construct an observable Õ
in the gauge theory with gauge group LG so that all correlators agree:

〈O1 . . . On〉X,G,τ = 〈Õ1 . . . Õn〉X,LG,−1/(ngτ).

At this point I should come clean and admit that the MO duality as stated
above is not correct. The most obvious objection is that the parameters e and
ẽ are renormalized and the relation like (1) is not compatible with renormal-
ization. However, it was pointed out later by Osborn [5] (who was building on
the work of Witten and Olive [10]) that the duality makes much more sense in
N = 4 super-Yang–Mills theory. This is a maximally supersymmetric exten-
sion of Yang–Mills theory in four dimensions and it has a remarkable property
that the gauge coupling is not renormalized at any order in perturbation the-
ory. Furthermore, Osborn was able to show that certain magnetically charged
solitons in N = 4 SYM theory have exactly the same quantum numbers as
gauge bosons. (The argument assumes that the vacuum breaks spontaneously
the gauge group G down to its maximal abelian subgroup, so that both mag-
netically charged solitons and the corresponding gauge bosons are massive.)
Later strong evidence in favour of the MO duality for N = 4 SYM was dis-
covered by Sen [11] and Vafa and Witten [12]. Nowadays MO duality is often
regarded as a consequence of string dualities. One particular derivation which
works for all G is explained in [13]. Nevertheless, the MO duality is still a
conjecture, not a theorem. In what follows we will assume its validity and
deduce from it the main statements of the Geometric Langlands Program.

Apart from the connection 1-form A, N = 4 SYM theory contains six
scalar fields φi, i = 1, . . . , 6, which are sections of ad(E), four spinor fields
λ̄a, a = 1, . . . , 4, which are sections of ad(E) ⊗ S− and four spinor fields
λa, a = 1, . . . , 4 which are sections of ad(E)⊗S+. Here S± are the two spinor
bundles over X. The fields A and φi are bosonic (even), while the spinor
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fields are fermionic (odd). In Minkowski signature the fields λ̄a and λa are
complex-conjugate, but in Euclidean signature they are independent.

The action of N = 4 SYM theory has the form

IN=4 = IY M +
1
e2

∫

X

⎛

⎝
∑

i

TrDφi ∧  Dφi + volX
∑

i<j

Tr[φi, φj ]2

⎞

⎠ + . . .

where dots denote terms depending on the fermions. The action has Spin(6) "
SU(4) symmetry under which the scalars φi transform as a vector, the fields
λa transform as a spinor and λ̄a transform as the dual spinor. This symmetry
is present for any Riemannian X and is known as the R-symmetry. If X is
R

4 with a flat metric, the action also has translational and rotational symme-
tries, as well as 16 supersymmetries Q̄aα and Qa

α̇, where a = 1, . . . , 4 and the
Spin(4) spinor indices α and α̇ run from 1 to 2. As is clear from the notation,
Q̄a and Qa transform as spinors and dual spinors of the R-symmetry group
Spin(6); they also transform as spinors and dual spinors of the rotational
group Spin(4).

One can show that under the MO duality all bosonic symmetry generators
are mapped trivially, while supersymmetry generators are multiplied by a τ -
dependent phase:

Q̄a → eiφ/2Q̄a, Qa → e−iφ/2Qa, eiφ =
|τ |
τ

This phase will play an important role in the next section.

3 Twisting N = 4 Super-Yang–Mills Theory

In order to extract mathematical consequences of MO duality, we are going
to turn N = 4 SYM theory into a topological field theory. The procedure for
doing this is called topological twisting [14].

Topological twisting is a two-step procedure. On the first step, one chooses
a homomorphism ρ from Spin(4), the universal cover of the structure group
of TX, to the R-symmetry group Spin(6). This enables one to redefine how
fields transform under Spin(4). The choice of ρ is constrained by the require-
ment that after this redefinition some of supersymmetries become scalars, i.e.
transform trivially under Spin(4). Such supersymmetries survive when X is
taken to be an arbitrary Riemannian manifold. In contrast, if we consider
ordinary N = 4 SYM on a curved X, it will have supersymmetry only if X
admits a covariantly constant spinor.

It is easy to show that there are three inequivalent choices of ρ satis-
fying these constraints [12]. The one relevant for the Geometric Langlands
Program is identifies Spin(4) with the obvious Spin(4) subgroup of Spin(6).
After redefining the spins of the fields accordingly, we find that one of the
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left-handed supersymmetries and one of the right-handed supersymmetries
become scalars. We will denote them Ql and Qr respectively.

On the second step, one notices that Ql and Qr both square to zero and
anticommute (up to a gauge transformation). Therefore one may pick any
linear combination of Ql and Qr

Q = uQl + vQr,

and declare it to be a BRST operator. That is, one considers only observables
which are annihilated by Q (and are gauge-invariant) modulo those which
are Q-exact. This is consistent because any correlator involving Q-closed ob-
servables, one of which is Q-exact, vanishes. From now on, all observables
are assumed to be Q-closed. Correlators of such observables will be called
topological correlators.

Clearly, the theory depends on the complex numbers u, v only up to an
overall scaling. Thus we get a family of twisted theories parametrized by the
projective line P

1. Instead of the homogenous coordinates u, v, we will mostly
use the affine coordinate t = v/u which takes values in C ∪ {∞}. All these
theories are diffeomorphism-invariant, i.e. do not depend on the Riemannian
metric. To see this, one writes an action (which is independent of t) in the
form

I = {Q,V } +
iΨ

4π

∫

X

TrF ∧ F

where V is a gauge-invariant function of the fields and Ψ is given by

Ψ =
θ

2π
+

t2 − 1
t2 + 1

4πi
e2

All the metric dependence is in V and since changing V changes the action
by Q-exact terms, we conclude that topological correlators are independent
of the metric.

It is also apparent that for fixed t topological correlators are holomorphic
functions of Ψ and this dependence is the only way e2 and θ may enter. In
particular, for t = i we have Ψ = ∞, independently of e2 and θ. This means
that for t = i topological correlators are independent of e2 and θ.

To proceed further, we need to describe the field content of the twisted
theory. Since the gauge field A is invariant under Spin(6) transformations, it is
not affected by the twist. As for the scalars, four of them become components
of a 1-form φ with values in ad(E) and the other two remain sections of ad(E);
we may combine the latter into a complex scalar field σ which is a section of
the complexification of ad(E). The fermionic fields in the twisted theory are a
pair of 1-forms ψ and ψ̃, a pair of 0-forms η and η̃, and a 2-form χ, all taking
values in the complexification of ad(E).

What makes the twisted theory manageable is that the path integral lo-
calizes on Q-invariant field configurations. One way to deduce this property is
to note that as a consequence of metric-independence, semiclassical (WKB)
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approximation is exact in the twisted theory. Thus the path-integral local-
izes on absolute minima of the Euclidean action. On the other hand, such
configurations are exactly Q-invariant configurations.

The condition of Q-invariance is a set of partial differential equations on
the bosonic fields A,φ and σ. We will only state the equations for A and φ,
since the equations for σ generically imply that σ = 0:

(F − φ ∧ φ + tDφ)+ = 0, (F − φ ∧ φ− t−1Dφ)− = 0, D  φ = 0.

Here subscripts + and − denote self-dual and anti-self-dual parts of a 2-form.
If t is real, these equations are elliptic. A case which will be of special

interest is t = 1; in this case the equations can be rewritten as

F − φ ∧ φ +  Dφ = 0, D  φ = 0.

They resemble both the Hitchin equations in 2d [15] and the Bogomolny equa-
tions in 3d [16] (and reduce to them in special cases). The virtual dimension
of the moduli space of these equations is zero, so the partition function is the
only non-trivial observable if X is compact without boundary. However, for
applications to the Geometric Langlands Program it is important to consider
X which are non-compact and/or have boundaries.

Another interesting case is t = i. To understand this case, it is convenient
to introduce a complex connection A = A+iφ and the corresponding curvature
F = dA + A2. Then the equations are equivalent to

F = 0, D  φ = 0.

The first of these equations is invariant under the complexified gauge trans-
formations, while the second one is not. It turns out that the moduli space is
unchanged if one drops the second equation and considers the space of solu-
tions of the equation F = 0 modulo GC gauge transformations. More precisely,
according to a theorem of Corlette [17], the quotient by GC gauge transfor-
mations should be understood in the sense of Geometric Invariant Theory, i.e.
one should distinguish stable and semistable solutions of F = 0 and impose
a certain equivalence relation on semistable solutions. The resulting moduli
space is called the moduli space of stable GC connections on X and will be
denoted Mflat(G,X). Thus for t = i the path integral of the twisted theory
reduces to an integral over Mflat(G,X). This is an indication that twisted
N = 4 SYM with gauge group G has something to do with the study of
homomorphisms from π1(X) to GC.

Finally, let us discuss how MO duality acts on the twisted theory. The key
observation is that MO duality multiplies Ql and Qr by e±iφ/2, and therefore
multiplies t by a phase:

t 
→ |τ |
τ
t.

Since Imτ �= 0, the only points of the P
1 invariant under the MO duality are

the “poles” t = 0 and t = ∞. On the other hand, if we take t = i and θ = 0,
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then the MO duality maps it to a theory with t = 1 and θ = 0 (it also replaces
G with LG). As we will explain below, it is this special case of the MO duality
that gives rise to the Geometric Langlands Duality.

4 Reduction to Two Dimensions

From now on we specialize to the case X = Σ×C where C and Σ are Riemann
surfaces. We will assume that C has no boundary and has genus g > 1, while
Σ may have a boundary. In our discussion we will mostly work locally on Σ
and its global structure will be unimportant.

Topological correlators are independent of the volumes of C and Σ. How-
ever, to exploit localization, it is convenient to consider the limit in which the
volume of C goes to zero. In the spirit of the Kaluza–Klein reduction, we ex-
pect that in this limit the 4d theory becomes equivalent to a 2d theory on Σ.
In the untwisted theory, this equivalence holds only in the limit vol(C) → 0,
but in the twisted theory the equivalence holds for any volume.

It is easy to guess the effective field theory on Σ. One begins by considering
the case Σ = R

2 and requiring the field configuration to be independent of the
coordinates on Σ and to have zero energy. One can show that such a generic
configuration has σ = 0, while φ and A are pulled-back from C and satisfy

F − φ ∧ φ = 0, Dφ = 0, D  φ = 0.

Here all quantities as well as the Hodge star operator refer to objects living
on C. These equations are known as Hitchin equations [15] and their space
of solutions modulo gauge transformations is called the Hitchin moduli space
MH(G,C). The space MH(G,C) is a non-compact manifold of dimension
4(g− 1) dimG with singularities.3 From the physical viewpoint, MH(G,C) is
the space of classical vacua of the twisted N = 4 SYM on C × R

2.
In the twisted theory, only configurations with vanishingly small energies

contribute. In the limit vol(C) → 0, such configurations will be represented by
slowly varying maps from Σ to MH(G,C). Therefore we expect the effective
field theory on Σ to be a topological sigma-model with target MH(G,C).

Before we proceed to identify more precisely this topological sigma-model,
let us note that MH(G,C) has singularities coming from solutions of Hitchin
equations which are invariant under a subgroup of gauge transformations. In
the neighbourhood of such a classical vacuum, the effective field theory is not
equivalent to a sigma-model, because of unbroken gauge symmetry. In fact, it
is difficult to describe the physics around such vacua in purely 2d terms. We
will avoid this difficulty by imposing suitable conditions on the boundary of
Σ ensuring that we stay away from such dangerous points.

3 We assumed g > 1 precisely to ensure that virtual dimension of MH(G, C) is
positive.
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The most familiar examples of topological sigma-models are A-and B-
models associated with a Calabi–Yau manifold M [18]. Both the models are
obtained by twisting a supersymmetric sigma-model with target M . Both the
models are topological field theories (TFTs), in the sense that correlators do
not depend on the metric on Σ. In addition, the A-model depends on the
symplectic structure of M , but not on its complex structure, while the B-
model depends on the complex structure of M , but not on its symplectic
structure.

As explained above, we expect that our family of 4d TFTs, when consid-
ered on a 4-manifold of the form Σ × C, becomes equivalent to a family of
topological sigma-models with target MH(G,C). To connect this family to
ordinary A-and B-models, we note that MH(G,C) is a (non-compact) hyper-
Kähler manifold. That is, it has a P

1 worth of complex structures compatible
with a certain metric. This metric has the form

ds2 = −
∫

C

Tr (δA ∧  δA + δφ ∧  δφ)

where (δA, δφ) is a solution of the linearized Hitchin equations representing a
tangent vector to MH(G,C). If we parameterize the sphere of complex struc-
tures by a parameter w ∈ C ∪ {∞}, the basis of holomorphic differentials is

δAz̄ − w δφz̄, δAz + w−1δφz.

By varying w, we get a family of B-models with target MH(G,C). Similarly,
since for each w we have the corresponding Kähler form on MH(G,C), by
varying w we get a family of A-models with target MH(G,C). However, the
family of topological sigma-models obtained from the twisted N = 4 SYM
does not coincide with either of these families. The reason for this is that a
generic A-model or B-model with target MH(G,C) depends on the complex
structure on C and therefore cannot arise from a TFT on Σ × C.

As explained in [6], this puzzle is resolved by recalling that for a hyper-
Kähler manifold M there are twists other than ordinary A or B twists. In
general, twisting a supersymmetric sigma-model requires picking two com-
plex structures on the target. If we are given a Kähler structure on M , one
can choose the two complex structures to be the same (B-twist) or opposite
(A-twist). But for a hyper-Kähler manifold there is a whole sphere of complex
structures and by independently varying the two complex structures one gets
P

1 ×P
1 worth of 2d TFTs. They are known as generalized topological sigma-

models, since their correlators depend on a generalized complex structure on
the target M [19, 20]. The notion of a generalized complex structure was in-
troduced by Hitchin [21] and it includes complex and symplectic structures
are special cases.

It turns out that for M = MH(G,C) there is a one-parameter subfamily of
this two-parameter family of topological sigma-models which does not depend
on the complex structure or Kähler form of C. It is this subfamily which
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appears as a reduction of the twisted N = 4 SYM theory. Specifically, the
two complex structures on MH(G,C) are given by

w+ = −t, w− = t−1.

Note that one gets a B-model if and only if w+ = w−, i.e. if t = ±i. One
gets an A-model if and only if t is real. All other values of t correspond to
generalized topological sigma-models.

Luckily to understand Geometric Langlands Duality we mainly need the
two special cases t = i and t = 1. The value t = i corresponds to a B-model
with complex structure J defined by complex coordinates

Az + iφz, Az̄ + iφz̄

on MH(G,C). These are simply components of the complex connection A =
A+ iφ along C. In terms of this complex connection two out of three Hitchin
equations are equivalent to

F = dA + A2 = 0.

This equation is invariant under complexified gauge transformations. The
third equation D  φ = 0 is invariant only under G gauge transformations.
By a theorem of Donaldson [22], one can drop this equation at the expense
of enlarging the gauge group from G to GC. (More precisely, one also has
to identify certain semistable solutions of the equation F = 0.) This is anal-
ogous to the situation in four dimensions. Thus in complex structure J the
moduli space MH(G,C) can be identified with the moduli space Mflat(G,C)
of stable flat GC connections on C. It is apparent that J is independent of
the complex structure on C, which implies that the B-model at t = i is also
independent of it.

The value t = 1 corresponds to an A-model with a symplectic structure

ωK =
2
e2

∫

C

Tr δφ ∧ δA.

It is a Kähler form of a certain complex structure K on MH(G,C). Note that
ωK is exact and independent of the complex structure on C.

Yet another complex structure on MH(G,C) is I = JK. It will make
an appearance later, when we discuss Homological Mirror Symmetry for
MH(G,C). In this complex structure, MH(G,C) can be identified with the
moduli space of stable holomorphic Higgs bundles. Recall that a (holomorphic)
Higgs bundle over C (with gauge group G) is a holomorphic G-bundle E over
C together with a holomorphic section ϕ of ad(E). In complex dimension
one, any principal G bundle can be thought of as a holomorphic bundle, and
Hitchin equations imply that ϕ = φ1,0 satisfies

∂̄ϕ = 0.
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This gives a map from MH(G,C) to the set of gauge-equivalence classes of
Higgs bundles. This map becomes one-to-one if we limit ourselves to sta-
ble or semistable Higgs bundles and impose a suitable equivalence relation-
ship on semistable ones. This gives an isomorphism between MH(G,C) and
MHiggs(G,C).

It is evident that the complex structure I, unlike J , does depend on the
choice of complex structure on C. Therefore the B-model for the moduli space
of stable Higgs bundles cannot be obtained as a reduction of a 4d TFT.4 On
the other hand, the A-model for MHiggs(G,C) is independent of the choice
of complex structure on C, because the Kähler form ωI is given by

ωI =
1
e2

∫

C

Tr (δA ∧ δA− δφ ∧ δφ).

In fact, the A-model for MHiggs(G,C) is obtained by letting t = 0. This
special case of reduction to 2d has been first discussed in [24].

5 Mirror Symmetry for the Hitchin Moduli Space

Now we are ready to infer the consequences of the MO duality for the topolog-
ical sigma-model with target MH(G,C). For θ = 0, the MO duality identifies
twisted N = 4 SYM theory with gauge group LG and t = i with a similar
theory with gauge group G and t = 1. Therefore the B-model with target
Mflat(LG,C) and the A-model with target (M(G,C), ωK) are isomorphic.

Whenever we have two Calabi–Yau manifolds M and M ′ such that the
A-model of M is equivalent to the B-model of M ′, we say that M and M ′ are
a mirror pair. Thus MO duality implies that Mflat(LG,C) and MH(G,C)
(with symplectic structure ωK) are a mirror pair. This mirror symmetry was
first proposed in [25].

It has been argued by Strominger et al. (SYZ) [26] that whenever M and
M ′ are mirror to each other, they should admit Lagrangian torus fibrations
over the same base B and these fibrations are dual to each other, in a suitable
sense. In the case of Hitchin moduli spaces, the SYZ fibration is easy to
identify [6]. One simply maps a solution (A,φ) of the Hitchin equations to the
space of gauge-invariant polynomials built from ϕ = φ1,0. For example, for
G = SU(N) or G = SU(N)/ZN the algebra of gauge-invariant polynomials
is generated by

Pn = Trϕn ∈ H0(C,Kn
C), n = 2, . . . , N,

so the fibration map maps MH(G,C) to the vector space

⊕N
n=2H

0(C,Kn
C).

4 It can be obtained as a reduction of a “holomorphic-topological” gauge theory on
Σ × C[23].
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The map is surjective [27], so this vector space is the base space B. The map
to B is known as the Hitchin fibration of MH(G,C). It is holomorphic in
complex structure I and its fibres are Lagrangian in complex structures J
and K. In fact, one can regard MHiggs(G,C) as a complex integrable system,
in the sense that the generic fibre of the fibration is a complex torus which is
Lagrangian with respect to a holomorphic symplectic form on MHiggs(G,C)

ΩI = ωJ + iωK .

(Ordinarily, an integrable system is associated with a real symplectic manifold
with a Lagrangian torus fibration.)

For general G one can define the Hitchin fibration in a similar way and one
always finds that the generic fibre is a complex Lagrangian torus. Moreover,
the bases B and LB of the Hitchin fibrations for MH(G,C) and MH(LG,C)
are naturally identified.5

While the Hitchin fibration is an obvious candidate for the SYZ fibration,
can we prove that it really is the SYZ fibration? It turns out this statement
can be deduced from some additional facts about MO duality.

While we do not know how the MO duality acts on general observables in
the twisted theory, the observables Pn are an exception, as their expectation
values parameterize the moduli space of vacua of the twisted theory on X =
R

4. The MO duality must identify the moduli spaces of vacua, in a way
consistent with other symmetries of the theory and this leads to a unique
identification of the algebras generated by Pn for G and LG. See [6] for details.

To complete the argument, we need to consider some particular topolog-
ical D-branes for MH(G,C) and MH(LG,C). A topological D-brane is a
boundary condition for a 2d TFT. The set of all topological D-branes has a
natural structure of a category (actually, an A∞ category). For a B-model
with a Calabi–Yau target M , this category is believed to be equivalent to the
derived category of coherent sheaves on M . Sometimes we will also refer to it
as the category of B-branes on M . For an A-model with target M ′, we get a
category of A-branes on M ′. It contains the Fukaya category of M ′ as a full
subcategory.

The simplest example of a B-brane on Mflat(LG,C) is the structure sheaf
of a (smooth) point. What is its mirror? Since each point p lies in some fibre
LFp of the Hitchin fibration, its mirror must be an A-brane on MH(G,C) lo-
calized on the corresponding fiber Fp of the Langlands-dual fibration. By def-
inition, this means that the Hitchin fibration is the same as the SYZ fibration.

According to Strominger et al., the fibres of the two mirror fibrations
over the same base point are T-dual to each other. Indeed, by the usual SYZ
argument the A-brane on Fp must be a rank-one object of the Fukaya category,
i.e. a flat unitary rank-1 connection on a topologically trivial line bundle over
Fp. The moduli space of such objects must coincide with the moduli space of

5 In some cases G and LG coincide, but the relevant identification is not necessarily
the identity map [6, 9].
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the mirror B-brane, which is simply LFp. This is precisely what we mean by
saying that that LFp and Fp are T-dual.

In the above discussion we have tacitly assumed that both MH(G,C)
and MH(LG,C) are connected. The components of MH(G,C) are labelled
by the topological isomorphism classes of principal G-bundles over C, i.e. by
elements of H2(C, π1(G)) = π1(G). Thus, strictly speaking, our discussion
applies literally only when both G and LG are simply connected. This is
rarely true; for example, among compact simple Lie groups only E8, F4 and
G2 satisfy this condition (all these groups are self-dual).

In general, to maintain mirror symmetry between MH(G,C) and MH(LG,
C), one has to consider all possible flat B-fields on both manifolds. A flat
B-field on M is a class in H2(M,U(1)) whose image in H3(M,Z) under the
Bockstein homomorphism is trivial. In the case of MH(G,C), the allowed flat
B-fields have finite order; in fact, they take values in H2(C,Z(G)) = Z(G),
where Z(G) is the centre of G. It is well known that Z(G) is naturally iso-
morphic to π1(LG). One can show that MO duality maps the class w ∈ Z(G)
defining the B-field on MH(G,C) to the corresponding element in π1(LG) la-
beling the connected component of MH(LG,C) (and vice versa). For example,
if G = SU(N), then MH(G,C) is connected and has N possible flat B-fields
labelled by Z(SU(N)) = ZN . On the other hand, LG = SU(N)/ZN and
therefore MH(LG,C) has N connected components labelled by π1(LG) = ZN .
There can be no non-trivial flat B-field on MH(LG,C) in this case. See Sect. 7
of [6] for more details.

Let us summarize what we have learned so far. MO duality implies that
MH(G,C) and MH(LG,C) are a mirror pair, with the SYZ fibrations being
the Hitchin fibrations. The most powerful way to formulate the statement of
mirror symmetry between two Calabi–Yau manifolds is in terms of the cor-
responding categories of topological branes. In the present case, we get that
the derived category of coherent sheaves on Mflat(LG,C) is equivalent to
the category of A-branes on MH(G,C) (with respect to the exact symplectic
form ωK). Furthermore, this equivalence maps a (smooth) point p belonging
to the fibre LFp of the Hitchin fibration of Mflat(LG,C) to the Lagrangian
submanifold of MH(G,C) given by the corresponding fiber of the dual fibra-
tion of MH(G,C). The flat unitary connection on Fp is determined by the
position of p on LFp.6

6 From A-Branes to D-Modules

Geometric Langlands Duality says that the derived category of coherent
sheaves on Mflat(LG,C) is equivalent to the derived category of D-modules
on the moduli stack BunG(C) of holomorphic G-bundles on C. This equiva-
lence is supposed to map a point on Mflat(LG,C) to a Hecke eigensheaf on
6 This makes sense only if LFp is smooth. If p is a smooth point but LFp is singular,

it is not clear how to identify the mirror A-brane on MH(G, C).
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BunG(C). We have seen that MO duality implies a similar statement, with
A-branes on MH(G,C) taking place of objects of the derived category of
D-modules on BunG(C). Our first goal is to explain the connection between
A-branes on MH(G,C) and D-modules on BunG(C). Later we will see how
the Hecke eigensheaf condition can be interpreted in terms of A-branes.

The starting point of our argument is a certain special A-brane on
MH(G,C) which was called the canonical coisotropic brane in [6]. Recall that
a submanifold Y of a symplectic manifold M is called coisotropic if for any
p ∈ Y the skew-complement of TYp in TMp is contained in TYp. A coisotropic
submanifold of M has dimension larger or equal than half the dimension of
M ; a Lagrangian submanifold of M can be defined as a middle-dimensional
coisotropic submanifold. While the most familiar examples of A-branes are La-
grangian submanifolds equipped with flat unitary vector bundles, it is known
from the work [28] that the category of A-branes may contain more general
coisotropic submanifolds with non-flat vector bundles. (Because of this, in
general the Fukaya category is only a full subcategory of the category of A-
branes.) The conditions on the curvature of a vector bundle on a coisotropic
A-brane are not understood except in the rank-one case; even in this case they
are fairly complicated [28]. Luckily, for our purposes we only need the special
case when Y = M and the vector bundle has rank one. Then the condition
on the curvature 2-form F ∈ Ω2(M) is

(ω−1F )2 = −1. (2)

Here we regard both F and the symplectic form ω as bundle morphisms
from TM to T ∗M , so that IF = ω−1F is an endomorphism of TM . We also
multiplied F by a factor i to make it real, rather than purely imaginary.

The condition (2) says that IF is an almost complex structure. Using the
fact that ω and F are closed 2-forms, one can show that IF is automatically
integrable [28].

Let us now specialize to the case M = MH(G,C) with the symplectic
form ωK . Then if we let

F = ωJ =
2
e2

∫

C

Tr δφ ∧  δA,

the equation is solved and

IF = ω−1
K ωJ = I.

Furthermore, since F is exact:

F ∼ δ

∫

C

Trφ ∧  δA,

we can regard F as the curvature of a unitary connection on a trivial line
bundle. This connection is defined uniquely if MH(G,C) is simply connected;
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otherwise any two such connections differ by a flat connection. One can show
that flat U(1) connections on a connected component of MH(G,C) are clas-
sified by elements of H1(C, π1(G)) [6]. Thus we obtain an almost canonical
coisotropic A-brane on MH(G,C): it is unique up to a finite ambiguity and
its curvature is completely canonical.

Next we need to understand the algebra of endomorphisms of the canonical
coisotropic brane. From the physical viewpoint, this is the algebra of vertex
operators inserted on the boundary of the worldsheet Σ; such vertex operators
are usually referred to as open string vertex operators (as opposed to closed
string vertex operators which are inserted at interior points of Σ). Actually,
the knowledge of the algebra turns out to be insufficient: we would like to work
locally in the target space MH(G,C) and work with a sheaf of open string
vertex operators on MH(G,C). The idea of localizing in target space has been
previously used by Malikov et al. to define the chiral de Rham complex [29];
we need an open-string version of this construction.

Localizing the path-integral in target space makes sense only if non-
perturbative effects can be neglected [30, 31]. The reason is that perturbation
theory amounts to expanding about constant maps from Σ to M and therefore
the perturbative correlator is an integral over M of a quantity whose value at
a point p ∈ M depends only of the infinitesimal neighbourhood of p. In such a
situation it makes sense to consider open-string vertex operators defined only
locally on M , thereby getting a sheaf on M . Because of the topological char-
acter of the theory, the OPE of Q-closed vertex operators is non-singular, and
Q-cohomology classes of such locally defined vertex operators form a sheaf of
algebras on M . One difference compared to the closed-string case is that oper-
ators on the boundary of Σ have a well-defined cyclic order and therefore the
multiplication of vertex operators need not be commutative. The cohomology
of this sheaf of algebras is the endomorphism algebra of the brane [6].

One can show that there are no non-perturbative contributions to any cor-
relators involving the canonical coisotropic A-brane [6] and so one can localize
the path-integral in MH(G,C). But a further problem arises: perturbative re-
sults are formal power series in the Planck constant and there is no guarantee
of convergence. In the present case, the role of the Planck constant is played
by the parameter e2 in the gauge theory.7 In fact, one can show that the series
defining the multiplication have zero radius of convergence for some locally
defined observables.

In order to understand the resolution of this problem, let us look more
closely the structure of the perturbative answer. In the classical approxi-
mation (leading order in e2), the sheaf of open-string states is the sheaf of
holomorphic functions on MH(G,C) in complex structure I [28, 32]. In this
complex structure, MH(G,C) can be identified with MHiggs(G,C) and the

7 At first sight, the appearance of e2 in the twisted theory may seem surprising,
but one should remember that the argument showing that the theory at t = 1 is
independent of e2 is valid only when the manifold X has no boundary.
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holomorphic coordinates are Az̄ and φz. There is a natural grading on this
algebra in which φz has degree 1 and Az̄ has degree 0. Note also that the
projection (Az̄, φz) 
→ Az̄ defines a map from MH(G,C) to BunG(C). If we
restrict the target of this map to the subspace of stable G-bundles M(G,C),
then the preimage of M(G,C) in MH(G,C) can be thought of as the cotan-
gent bundle to M(G,C).

At higher orders, the multiplication becomes non-commutative and in-
compatible with the grading. However, it is still compatible the associated
filtration. That is, the product of two functions on MHiggs(G,C) which are
polynomials in φz of degrees k and l is a polynomial of degree k + l. There-
fore the product of polynomial observables defined by perturbation theory is
well-defined (it is a polynomial in the Planck constant).

We see that we can get a well-defined multiplication of vertex operators
if we restrict to those which depend polynomially on φz. That is, we have
to “sheafify” our vertex operators only along the base of the projection to
M(G,C), while along the fibres the dependence is polynomial.

Holomorphic functions on the cotangent bundle of M(G,C) polynomially
depending on the fibre coordinates can be thought of as symbols of differ-
ential operators acting on holomorphic functions on M(G,C), or perhaps on
holomorphic sections of a line bundle on M(G,C). One may therefore suspect
that the sheaf of open-string vertex operators is isomorphic to the sheaf of
holomorphic differential operators on some line bundle L over M(G,C). It is
shown in [6] that this is indeed the case and the line bundle L is a square root
of the canonical line bundle of M(G,C). (It does not matter which square
root one takes.)

Now we can finally explain the relation between A-branes and (twisted)
D-modules on M(G,C) ⊂ BunG(C). Given an A-brane β, we can consider
the space of morphisms from the canonical coisotropic brane α to the brane
β. It is a left module over the endomorphism algebra of α. Better still, we can
sheafify the space of morphisms along M(G,C) and get a sheaf of modules
over the sheaf of differential operators on K1/2, where K is the canonical
line bundle of M(G,C). This is the twisted D-module corresponding to the
brane β.

In general it is rather hard to determine the D-module corresponding to
a particular A-brane. A simple case is when β is a Lagrangian submanifold
defined by the condition φ = 0, i.e. the zero section of the cotangent bun-
dle M(G,C). In that case, the D-module is simply the sheaf of sections of
K1/2. From this example, one could suspect that the A-brane is simply the
characteristic variety of the corresponding D-module. However, this is not so
in general, since in general A-branes are neither conic nor even holomorphic
subvarieties of MHiggs(G,C). For example, a fiber of the Hitchin fibration Fp

is holomorphic but not conic. It is not clear how to compute the D-module
corresponding to Fp, even when Fp is a smooth fibre.8

8 The abelian case G = U(1) is an exception, see [6] for details.
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We conclude this section with two remarks. First, the relation between
A-branes is most readily understood if we replace the stack BunG(C) by the
space of stable G-bundles M(G,C). Second, from the physical viewpoint it
is more natural to work directly with A-branes rather than with correspond-
ing D-modules. In some sense it is also more natural from the mathematical
viewpoint, since both the derived category of Mflat(LG,C) and the category
of A-branes on MH(G,C) are “topological”, in the sense that they do not
depend on the complex structure on C. The complex structure on C appears
only when we introduce the canonical coisotropic brane (its curvature F man-
ifestly depends on the Hodge star operator on C).

7 Wilson and ’t Hooft Operators

In any gauge theory one can define Wilson loop operators:

TrR P exp
∫

γ

A = TrR (Hol(A, γ)) ,

where R is a finite-dimensional representation of G, γ is a closed loop in M
and P exp

∫
is simply a physical notation for holonomy. The Wilson loop is

a gauge-invariant function of the connection A and therefore can be regarded
as a physical observable. Inserting the Wilson loop into the path-integral is
equivalent to inserting an infinitely massive particle travelling along the path
γ and having internal “colour-electric” degrees of freedom described by rep-
resentation R of G. For example, in the theory of strong nuclear interactions
we have G = SU(3) and the effect of a massive quark can be modelled by
a Wilson loop with R being a three-dimensional irreducible representation.
The vacuum expectation value of the Wilson loop can be used to distinguish
various massive phases of the gauge theory [33]. Here however we will be in-
terested in the algebra of Wilson loop operators, which is insensitive to the
long-distance properties of the theory.

The Wilson loop is not BRST-invariant and therefore is not a valid ob-
servable in the twisted theory. But it turns out that for t = ±i there is a
simple modification which is BRST-invariant:

WR(γ) = TrR P exp
∫

γ

(A± iφ) = TrR (Hol(A± iφ), γ))

The reason is that the complex connection A = A± iφ is BRST-invariant for
these values of t. There is nothing similar for any other value of t.

We may ask how the MO duality acts on Wilson loop operators. The
answer is to a large extent fixed by symmetries, but turns out to be rather
non-trivial [34]. The difficulty is that the dual operator cannot be written as
a function of fields, but instead is a disorder operator. Inserting a disorder
operator into the path-integral means changing the space of fields over which
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one integrates. For example, a disorder operator localized on a closed curve γ
is defined by specifying a singular behaviour for the fields near γ. The disorder
operator dual to a Wilson loop has been first discussed by G. ’t Hooft [35]
and is defined as follows [34]. Let μ be an element of the Lie algebra g defined
up to adjoint action of G and let us choose coordinates in the neighbourhood
of a point p ∈ γ so that γ is defined by the equations x1 = x2 = x3 = 0. Then
we require the curvature of the gauge field to have a singularity of the form

F ∼  3 d
( μ

2r

)
,

where r is the distance to the origin in the 123 hyperplane and  3 is the
Hodge star operator in the same hyperplane. For t = 1 Q-invariance requires
the 1-form Higgs field φ to be singular as well:

φ ∼ μ

2r
dx4.

One can show that such an ansatz for F makes sense (i.e. one can find a gauge
field whose curvature is F ) if and only if μ is a Lie algebra homomorphism
from R to g obtained from a Lie group homomorphism U(1) → G [3]. To
describe this condition in a more suggestive way, let us use the gauge freedom
to conjugate μ to a particular Cartan subalgebra t of g. Then μ must lie in
the coweight lattice Λcw(G) ⊂ t, i.e. the lattice of homomorphisms from U(1)
to the maximal torus T corresponding to t. In addition, one has to identify
points of the lattice which are related by an element of the Weyl group W.
Thus ’t Hooft loop operators are classified by elements of Λcw(G)/W.

By definition, Λcw(G) is identified with the weight lattice Λw(LG) of LG.
But elements of Λw(LG)/W are in one-to-one correspondence with irreducible
representations of LG. This suggests that MO duality maps the ’t Hooft op-
erator corresponding to a coweight B ∈ Λcw(G) to the Wilson operator cor-
responding to a representation LR with highest weight in the Weyl orbit of
B ∈ Λw(LG). This is a reinterpretation of the the Goddard–Nuyts–Olive ar-
gument discussed in Sect. 2 in terms of operators rather than states.

To test this duality, one can compare the algebra of ’t Hooft operators for
gauge group G and Wilson operators for gauge group LG. In the latter case,
the operator product is controlled by the algebra of irreducible representations
of LG. That is, we expect that as the loop γ′ approaches γ, we have

WR(γ)WR′(γ′) ∼
⊕

Ri⊂R⊗R′

WRi
(γ),

where R and R′ are irreducible representations of G and the sum on the
right-hand side runs over irreducible summands of R⊗R′.

In the case of ’t Hooft operators the computation of the operator product
is much more non-trivial [6]. It can be related to computing the L2 cohomol-
ogy of Schubert cells of the affine Grassmannian GrG. Assuming that the L2
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cohomology coincides with the intersection cohomology of the closure of the
cell, the prediction of the MO duality reduces to the statement of the geomet-
ric Satake correspondence, which says that the tensor category of equivariant
perverse sheaves on GrG is equivalent to the category of finite-dimensional
representations of LG [36, 37, 38]. This provides a new and highly non-trivial
check of the MO duality.

The geometric Satake correspondence can be thought of as a local version
of the Geometric Langlands Duality. The reason is that irreducible objects in
the category of equivariant perverse coherent sheaves on GrG are naturally
associated with Hecke operations on G-bundles on C which modify the G-
bundle at a single point.

Similarly, from the gauge-theoretic viewpoint one can think about ’t Hooft
operators as functors from the category of A-branes on MH(G,C) to itself.
To understand how this comes about, consider a loop operator (Wilson or ’t
Hooft) in the twisted N = 4 SYM theory (at t = i or t = 1, respectively). As
usual, we take the four-manifold X to be Σ ×C and let the curve γ be of the
form γ0 × p, where p ∈ C and γ0 is a curve on Σ. Let ∂Σ0 be a connected
component of ∂Σ on which we specify a boundary condition corresponding to
a given brane β. This brane is either a B-brane in complex structure J or an
A-brane in complex structure K, depending on whether t = i or t = 1. Now
suppose γ0 approaches ∂Σ0. The “composite” of ∂Σ0 with boundary condition
β and the loop operator can be thought of as a new boundary condition for
the topological sigma-model with target MH(G,C). It depends on p ∈ C as
well as other data defining the loop operator. One can show that this “fusion”
operation defines a functor from the category of topological branes to itself [6].

In the case of the Wilson loop, it is very easy to describe this functor. In
complex structure J , we can identify MH(G,C) with Mflat(G,C). On the
product Mflat(G,C) × C there is a universal G-bundle which we call E . For
any p ∈ C let us denote by Ep the restriction of E to Mflat(G,C) × p. For
any representation R of G we can consider the operation of tensoring coherent
sheaves on Mflat(G,C) with the associated holomorphic vector bundle R(Ep).
One can show that this is the functor corresponding to the Wilson loop in
representation R inserted at a point p ∈ C. We will denote this functor WR(p).
The action of ’t Hooft loop operators is harder to describe, see Sects. 9 and
10 of [6] for details. In particular, it is shown there that ’t Hooft operators
act by Hecke transformations.

Consider now the structure sheaf Ox of a point x ∈ Mflat(LG,C). For
any representation LR of LG the functor corresponding to WLR(p) maps Ox

to the sheaf Ox ⊗LR(Ep)x. That is, Ox is simply tensored with a vector space
LR(Ep)x. One says that Ox is an eigenobject of the functor WLR(Ep) with
eigenvalue LR(Ep)x. The notion of an eigenobject of a functor is a categori-
fication of the notion of an eigenvector of a linear operator: instead of an
element of a vector space one has an object of a C-linear category, instead of
a linear operator one has a functor from the category to itself and instead of
a complex number (eigenvalue) one has a complex vector space LR(Ep)x.
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We conclude that Ox is a common eigenobject of all functors WLR(p)
with eigenvalues LR(Ep)x. Actually, since we can vary p continuously on C
and the vector spaces LR(Ep)x are naturally identified as one varies p along
any path on C, it is better to say that the eigenvalue is a flat LG-bundle
LR(E)x. Tautologically, this flat vector bundle is obtained by taking the flat
principal LG-bundle on C corresponding to x and associating it with a flat
vector bundle via the representation LR.

Applying the MO duality, we may conclude that the A-brane on MH(G,C)
corresponding to a fibre of the Hitchin fibration is a common eigenobject for
all ’t Hooft operators, regarded as functors on the category of A-branes. The
eigenvalue is the flat LG bundle on C determined by the mirror of the A-
brane. This is the gauge-theoretic version of the statement that the D-module
on BunG(C) corresponding to a point on Mflat(LG,C) is a Hecke eigensheaf.
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Abstract. In this chapter we outline some applications of Homological Mirror
Symmetry to classical problems in Algebraic Geometry, like rationality of algebraic
varieties and the study of algebraic cycles. Several examples are studied in detail.

1 Introduction

In this chapter we discuss some classical questions of algebraic geometry from
the point of view of Homological Mirror Symmetry.

Mirror symmetry was introduced as a special duality between two N = 2
super conformal field theories. Traditionally an N = 2 super conformal field
theory (SCFT) is constructed as a quantization of a σ-model with target a
compact Calabi–Yau manifold equipped with a Ricci flat Kähler metric and a
closed 2-form – the so-called B-field. We say that two Calabi–Yau manifolds
X and Y form a mirror pair X|Y if the associated N = 2 SCFTs are mirror
dual to each other [10].

This chapter contains an outline of a program for applications of ideas of
Homological Mirror Symmetry (HMS) to the study of rationality questions
and the Hodge Conjecture. These ideas were announced at the conference on
HMS, Vienna, 2006. Complete results will appear elsewhere.

We start with a quick introduction of Homological Mirror Symmetry. Af-
ter that we introduce our construction of the Mirror Landau–Ginzburg Model
which differs from constructions in [19] we refer to other papers for the fun-
damentals of this construction and give some examples and applications.

1. First we outline an application to Birational Geometry. One of the
main questions in classical Algebraic Geometry is if a smooth projective n
dimensional variety X has a field of meromorphic functions C(X) isomorphic
to the field of meromorphic functions of CP

n. The following techniques have
been used to study this question:
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• The technique of intermediate Jacobians introduced by Clemens and Grif-
fiths [8].

• The technique of birational automorphisms of X introduced by Iskovskikh
and Manin [16]. As a consequence of it, namely of the Noether–Fano in-
equality, Pukhlikov and later Ein, Mustata and de Fernex have introduced
the technique of log canonical thresholds [11, 12, 32].

• The degeneration techniques introduced by Kollár [26].
• Artin’s and Mumford’s approach later developed by Saltman and

Bogomolov [5].

Examples, where this new technique applies, will be discussed:

• We outline ideas for proving criteria for non-rationality of conic bundles
and compare it with a rationality criteria introduced by Iskovskikh [17]
and Sarkisov.

• We outline a proof of non-rationality of generic three and four dimensional
cubic.

Birational geometry Homological mirror symmetry
X w : Y → CP

1

Blow-up Adding singular fibers
Blow-down Taking out singular fibers

2. Then we move to the case of abelian varieties an we study the following
correspondence there

Algebraic cycles Lagrangian cycles
X w : Y → CP

1

Tropical classes Lagrangian submanifolds
Tropical varieties Fukaya Seidel Lagrangians

The paper is organized as follows. In Sect. 2 we introduce basics of HMS.
Connection with Birational Geometry is discussed in Sect. 3. Questions related
to Hodge Conjecture appear in Sect. 4. We mainly outline the flavor of the
arguments – full details will appear elsewhere.

2 Definitions

We first recall a definition which belongs to Seidel [33]. Historically the idea
was introduced first by M. Kontsevich and later by K. Hori. We begin by
briefly reviewing Seidel’s construction of a Fukaya-type A∞-category associ-
ated with a symplectic Lefschetz pencil see [33, 34].

Let (Y, ω) be an open symplectic manifold of dimension dimR Y = 2n.
Let w : Y → C be a symplectic Lefschetz fibration, i.e. w is a C∞ complex-
valued function with isolated non-degenerate critical points p1, . . . , pr near
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which w is given in adapted complex local coordinates by w(z1, . . . , zn) =
f(pi)+ z2

1 + · · ·+ z2
n and whose fibers are symplectic submanifolds of Y . Fix a

regular value λ0 of w and consider arcs γi ⊂ C joining λ0 to the critical value
λi = f(pi). Using the horizontal distribution which is symplectic orthogonal
to the fibers of w, we can transport the vanishing cycle at pi along the arc γi

to obtain a Lagrangian disc Di ⊂ Y fibered above γi, whose boundary is an
embedded Lagrangian sphere Li in the fiber Σλ0 = w−1(λ0). The Lagrangian
disc Di is called the Lefschetz thimble over γi and its boundary Li is the
vanishing cycle associated to the critical point pi and to the arc γi.

After a small perturbation we may assume that the arcs γ1, . . . , γr in C

intersect each other only at λ0 and are ordered in the clockwise direction
around λ0. Similarly we may always assume that the Langrangian spheres
Li ⊂ Σλ0 intersect each other transversely inside Σ0.

Definition 2.1 Given a coefficient ring R, the R-linear directed Fukaya cate-
gory FS(Y,w; {γi}) is the following A∞-category: the objects of FS(Y,w; {γi})
are the Lagrangian vanishing cycles L1, . . . , Lr; the morphisms between the
objects are given by

Hom(Li, Lj) =

⎧
⎪⎨

⎪⎩

CF ∗(Li, Lj ;R) = R|Li∩Lj | if i < j

R · id if i = j

0 if i > j;

and the differential m1, composition m2 and higher order products mk are
defined in terms of Lagrangian Floer homology inside Σλ0 .

More precisely,

mk : Hom(Li0 , Li1) ⊗ · · · ⊗ Hom(Lik−1 , Lik
) → Hom(Li0 , Lik

)[2 − k]

is trivial when the inequality i0 < i1 < · · · < ik fails to hold (i.e. it is always
zero in this case, except for m2 where composition with an identity morphism
is given by the obvious formula).

When i0 < · · · < ik, mk is defined by fixing a generic ω-compatible almost-
complex structure on Σλ0 and counting pseudo-holomorphic maps from a disc
with k+ 1 cyclically ordered marked points on its boundary to Σλ0, mapping
the marked points to the given intersection points between vanishing cycles
and the portions of boundary between them to Li0 , . . . , Lik

respectively (see
[34]).

It is shown in [34] that the directed Fukaya category FS(Y,w; {γi}) is
independent of the choice of paths. We will denote this category by FS(Y,w)
and will refer to it as the Fukaya–Seidel category of w.

Let Y be a complex algebraic variety (or a complex manifold) and let
w : Y → C be a holomorphic function. Following [31] we define:
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Definition 2.2 (Orlov) The derived category Db(Y,w) of a holomorphic
potential
w : Y → C is defined as the disjoint union

Db(Y,w) :=
∐

t

Db
sing(Yt)

of the derived categories of singularities Db
sing(Yt) of all fibers Yt := w−1(t)

of w.
The category Db

sing(Yt) = Db(Yt)/Perf(Yt) is defined as the quotient cate-
gory of derived category of coherent sheaves on Yt modulo the full triangulated
subcategory of perfect complexes on Yt. Note that Db

sing(Yt) is non-trivial only
for singular fibers Yt.

In the following paper we will use notions defined in [19] Sect. 7.3. Let X
be a manifold of general type, i.e. a sufficiently high power of the canonical
linear system on X defines a birational map. We will use the above definitions
to formulate and motivate an analog of Kontsevich’s Homological Mirror Sym-
metry (HMS) conjecture for such manifolds as well as for Fano manifolds –
manifolds whose anticanonical linear system defines a birational map.

A quantum sigma-model with target X is free in the infrared limit, while
in the ultraviolet limit it is strongly coupled. In order to make sense of this
theory at arbitrarily high energy scales, one has to embed it into some asymp-
totically free N = 2 field theory, for example into a gauged linear sigma-model
(GLSM). Here “embedding” means finding a GLSM such that the low-energy
physics of one of its vacua is described by the sigma-model with target X.
In mathematical terms, this means that X has to be realized as a complete
intersection in a toric variety.

The GLSM usually has additional vacua, whose physics is not related to X.
Typically, these extra vacua have a mass gap. To learn about X by studying
the GLSM, it is important to be able to recognize the extra vacua. Let Z be
a toric variety defined as a symplectic quotient of C

N by a linear action of
the gauge group G " U(1)k. The weights of this action will be denoted Qia,
where i = 1, . . . , N and a = 1, . . . , k. Let X be a complete intersection in
Z given by homogeneous equations Gα(X) = 0, α = 1, . . . ,m. The weights
of Gα under the G-action will be denoted dαa. The GLSM corresponding to
X involves chiral fields Φi, i = 1, . . . , N and Ψα, α = 1, . . . ,m. Their charges
under the gauge group G are given by matrices Qia and dαa, respectively. The
Lagrangian of the GLSM depends also on complex parameters ta, a = 1, . . . , k.
On the classical level, the vector ta is the level of the symplectic quotient and
thus parameterizes the complexified Kähler form on Z. The Kähler form on X
is the induced one. On the quantum level the parameters ta are renormalized
and satisfy linear renormalization semigroup equations:

μ
∂ta
∂μ

= βa :=
∑

i

Qia −
∑

α

dαa.
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In the Calabi–Yau case all βa vanish and the parameters ta are not renormal-
ized. Here μ denote the massive and massless vacua.

According to Hori–Vafa [20] the Landau–Ginzburg model (Y,w) that is
mirror to X will have (twisted) chiral fields Λa, a = 1, . . . , k, Yi, i = 1, . . . , N
and Υα, α = 1, . . . ,m and a superpotential is given by

w =
∑

a

Λa

(
∑

i

QiaYi −
∑

α

dαaΥα − ta

)

+
∑

i

e−Yi +
∑

α

e−Υα .

The vacua are in one-to-one correspondence with the critical points of w. By
definition, massive vacua are those corresponding to non-degenerate critical
points. An additional complication is that before computing the critical points
one has to partially compactify the target space of the LG model.

One can determine which vacua are “extra” (i.e. unrelated to X) as follows.
The infrared limit is the limit μ → 0. Since ta depend on μ, so do the critical
points of w. A critical point is relevant for X (i.e. is not an extra vacuum)
if and only if the critical values of e−Yi all go to zero as μ goes to zero. In
terms of the original variables Φi, this means that vacuum expectation values
of |Φi|2 go to +∞ in the infrared limit. This is precisely the condition which
justifies the classical treatment of vacua in the GLSM. Recall also that the
classical space of vacua in the GLSM is precisely X.

Now let us state the analog of the HMS for complete intersections X
of general type. We will write Db(X) for the standard derived category of
bounded complexes of coherent sheaves on X and by Fuk(X,ω) the standard
Fukaya category of a symplectic manifold X with a symplectic form ω.

Conjecture 2.3 Let X be a variety of general type which is realized as a
complete intersection in a toric variety and let (Y,w) be the mirror LG model.
The derived Fukaya category Fuk(X,ω) of X embeds as a direct summand into
the category Db(Y,w) (the category of B-branes for the mirror LG model). If
the extra vacua are all massive, the complement of the Fukaya category of X
in Db(Y,w) is very simple: each extra vacuum contributes a direct summand
which is equivalent to the derived category of graded modules over a Clifford
algebra.

There is also a mirror version of this conjecture:

Conjecture 2.4 The derived category Db(X) of coherent sheaves on X em-
beds as a full sub-category into the derived Fukaya-Seidel category FS(Y,w)
of the potential w.

With an appropriate generalization of Fukaya–Seidel category to the case
of non-isolated singularities we arrive at Table 1 summarizing our previous
considerations. The categories Db

λi,ri
(Y,w) and FS(λi,ri)(Y,w, ω) appearing

in the last row of Table 1 are modifications which contain information only
about singular fibers with base points contained in a disc with a radius – a
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Table 1. Kontsevich’s HMS conjecture

A side B side

X — compact manifold,
ω — symplectic form on X. X — smooth projective variety over C

Fuk(X, ω) =

{
Obj: (Li, E)
Mor: HF (Li, Lj)

Li — Lagrangian submanifold of X,
E — flat U(1)-bundle on Li

Db(X) =

{
Obj: C•

i

Mor: Ext(C•
j , C•

j )

C•
i — complex of coherent sheaves on

X

��

��������������� ��

���������������

(Y, ω) — open symplectic manifold,
w : Y → C — a proper C∞ map with
symplectic fibers.

Y — smooth quasi-projective variety
over C,
w : Y → C — proper algebraic map.

FS(Y, w, ω) =

{
Obj: (Li, E)
Mor: HF (Li, Lj)

Li — Lagrangian submanifold of Yλ0 ,
E — flat U(1)-bundle on Li.

Db(Y, w) =
⊔

t

Db(Yt)
/

Perf(Yt)

FSλi,ri(Y, w, ω) – the Fukaya-Seidel
category of (Y|t−λi|<ri

, w, ω).

Db
λi,ri

(Y, w) =
⊔

|t−λi|≤ri

Db(Yt)
/

Perf(Yt)

real number λ, are introduced in order to deal with problems arising from
massless vacua.

In this formalism we have to take a Karoubi closure on both sides.

3 The Construction

The standard construction of Landau–Ginzburg models was done for smooth
complete intersections in toric varieties in [19]. We describe a new procedure
which is a natural continuation of our previous results [2] and of the works
of Moishezon and Teicher. Our procedure underlines the geometric nature of
HMS and several categorical correspondences come naturally. We will restrict
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ourselves to the case of three dimensional Fano manifolds X with the an-
ticanonical linear system on it. For simplicity we will assume that | − KX |
contains a pencil.

Step 1. Choose a Moishezon degeneration [2] X → Δ of X corresponding
to a projective embedding of X given by a multiple of the ample line bundle
−KX . This means that we choose a generic Noether normalization projection
X → P

3 in the given projective embedding and then degenerate the covering
map to a totally split cover. The central fiber X0 of this degeneration is a
configuration of spaces intersecting over rational surfaces and curves. Next
we choose a pencil : X ��� P

1 in the linear system | − KX/Δ| so that on
each fiber Xt, t ∈ Δ, the base of the pencil t : Xt ��� P

1 intersects the
discriminant locus ΔXt

in minimal number of points. As we will see below,
such lines P

1 ⊂ | −KXt
| have very strong rigidity properties.

Step 2. The degeneration X → Δ can be seen as a logarithmic structure
(see [13]) X†

0 on X0 – roughly an union of toric varieties, intersecting over
toric varieties plus monodromy data. The pencil induces a pencil † on the
logarithmic space X†

0 .

Step 3. We apply a Legendre transform [13] to (X†
0 ,f

†) and obtain a new
logarithmic structure (Y †

0 ,w
†) with a pencil on it. Roughly we take the dual

intersection complex and then for vertices we specify the normal fan structure
and corresponding monodromy.

Step 4. We use the logarithmic structure Y †
0 to smooth Y0 and get a mirror

degenerating family Y → Δ and a mirror Landau–Ginzburg potential w : Y →
P

1. Basically, on the generic fiber Y of Y → Δ, the potential w : Y ��� P
1 is an

anticanonical pencil of mirror manifolds to the anticanonical K3 surfaces in X.
As before we move the P

1 ⊂ |−KY | corresponding to the pencil w : Y ��� P
1

so that it intersects the discriminant locus ΔY in a minimal number of points
(0 and ∞ among them – in Physics language this is the point of maximal
degeneration and the Gepner point).

The construction above will allow us to see HMS in purely geometric terms.
In many cases it could lead to a proof of HMS and in many cases it could
lead to establishing an isomorphism between the K-theory of the categories
involved. The construction suggests other categorical correspondences. Similar
procedure works in dimensions other than three and applies not only to Fano
manifolds.

Remark 3.1 The construction above works not only on anticanonical pen-
cils but for other pencils as well. We will demonstrate this on examples of
three and four dimensional cubics. In all these examples the lines we chose
to intersect ΔY are rather rigidified – the number of intersection points is



132 L. Katzarkov

given by the eigenvalues of the operator of quantum multiplication by c1(X)
on H(X). The correspondences coming from the associated noncommutative
Hodge structures put additional restrictions (see [25]).

Step 5. The construction above allow us to work not only with the X and its
Landau–Ginzburg model but with the algebraic cycles in X and the mirror
Lagrangians in Y . We briefly describe how this works – for more see [23].
Let us restrict ourselves to the case of a curve C in three dimensional Fano
manifold X. The construction from Sect. 2 allows us to follow what happens
with the mirror image of any algebraic cycles. In the example of an algebraic
curve C and its tropical realization T [29] we get that the image of T under the
Legendrian transform is the conormal tori fibration – see the picture bellow.
The new lagrangian cycle L is the mirror the curve C.

4 Birational Transformations and HMS

4.1 Some Examples

Let X be a smooth projective variety and Z be a smooth subvariety. As a
consequence of the weak factorization theorem [35] it is enough to study the
Landau–Ginzburg mirrors of blow-ups and blow-downs with smooth centers.
Recall the following result.

Theorem 4.1 (Orlov [30]) Let X be a smooth projective variety and XZ be a
blow up of X in a smooth subvariety Z of codimension k. Then Db(XZ) has a
semiorthogonal decomposition (Db(X),Db(Z)k−1, . . . , D

b(Z)0). Here Db(Z)i

are corresponding twists by O(i) (see [30]).

This B-side statement has an A-model counterpart. In a joint work in progress
with D. Auroux we consider the following:

Conjecture 4.2 The Landau–Ginzburg mirror (T, g, ωT ) of XZ is the con-
nected symplectic sum of the Landau–Ginzburg mirror (Y,w, ωY ) of X and
the Landau–Ginsburg mirror (S,f , ωS) of Y × (C∗)k. On the level of cat-
egories this means that FS(T, g, ωT ) has a semiorthogonal decomposition
(FS(T, g, ωT ), FS(S,f , ωS)k−1, . . . , FS(S,f , ωS)0).



Homological Mirror Symmetry and Algebraic Cycles 133

Here FS(S,f , ωS)i are categories of vanishing cycles located at k−1 roots
of unity around infinity.

We discuss some simple examples in order to illustrate the above state-
ment.

Example 4.3 We discuss the LG model mirror to CP
3 blown up in a point.

In this case k = 3. The LG mirror of the blown-up manifold is a family of
K3 surfaces with 6 singular fibers. Four of these fibers correspond to the LG
mirror of CP

3 and they are situated near zero. The two remaining fibers are
sitting over second roots of unity in the local chart around ∞ – see Fig. 1.

Example 4.4 We discuss LG model mirror to CP
3 blown up in a line. In this

case k = 2. We get as LG model of the blown-up manifold a family of K3
surfaces with six singular fibers. Four of these fibers correspond to the LG
model of CP

3 and they are situated near zero. The two other fibers are very
close to each other. We briefly describe the procedure in this case. We start
with the LG model for CP

3

w = x + y + z +
1

xyz
.

We add the additional term μxy, with μ corresponding to the volume of the
blown up CP

1. The critical points of

w = x + y + z +
1

xyz
+ μxy

split in two groups described in Fig. 2.

Remark 4.5 The example above is simple but instructive. Indeed the line in
CP

3 defined by x = y = 1 has its Landau–Ginzburg mirror defined by

w = 2 + z +
1
z

+ 1.

This suggests that the Landau Ginzburg mirror of CP
1 is contained in

Landau Ginzburg mirror of CP
3.

Fig. 1. LG model of CP
3 blown-up at a point
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Fig. 2. LG model of CP
3 blown-up at a line

Example 4.6 We discuss the LG model mirror to CP
n blown-up in CP

k. As in
the previous examples it can be seen as the gluing of several Landau–Ginzburg
models mirroring to CP

n and CP
k × (C∗)n−k. The result is a LG model with

n + 1 singular fibers located around zero (corresponding to CP
n) glued to

n − k − 1 other LG models of CP
k with singular fibers located around k − 1

roots of unity far away from zero – see also [28].

Example 4.7 Let us look at the Landau–Ginzburg model mirror to the mani-
fold X which is the blow-up of CP

3 in a genus two curve embedded as a (2, 3)
curve on a quadric surface. We describe the mirror of X. It is the deformation
of the image of the compactification D of the map

(t : u1 : u2 : u3) 
→ (t : u1 : u2 : u3 : u1 · u2 : u2 · u3 : u1 · u3)

of CP
3 in CP

7.
The function w gives a pencil of degree 8 on the compactified D. We can

interpret this pencil as obtained by first taking the Landau–Ginzburg mirror
of CP

3 and then adding to it a new singular fiber consisting of three rational
surfaces intersecting over degenerated genus two curve Fig. 3. This process is
the A-model counterpart of blowing up of the genus two curve in CP

3 and
according to Orlov’s theorem, stated above, can be used to define HMS for
manifolds of general type.

The potential in the equation above is

w = t + u1 + u2 + u3 +
1

u1 · u2
+

1
u2 · u3

+
1

u1 · u3
.

Clearing denominators and substituting t = u3 = 0 and u2
1 = u3

2 we get a
singularity. Its resolution produces Db(Y,w) a quiver category with relations
equivalent to the Fukaya category of genus two curve. But observe that this
singularity is very different from the one of the CP

1. This is precisely the point
we would like to explore. The rational varieties produce simple singularities.
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Fig. 3. LG of blow-up of CP
3 in a genus 2 curve

Let us work out the example of LG model of CP
4 blown up in the intersec-

tion of a smooth cubic and quadric surfaces. In the case of the cubic surface
we have the compactification D of the map

(t : u1 : u2 : u3 : u4) 
→ (t : u1 : u2 : u3 : u4 : u1 ·u2 ·u4 : u2 ·u3 ·u4 : u1 ·u2 ·u3).

This procedure when restricted to dimension 2 produces LG model from [3].
Indeed after change of coordinates and restricting to dimension 2 we get

wXY Z = c(X + Y + Z)3

where c is a constant.
We notice here that the procedure described above allows us to look at

the Landau–Ginzburg models in a different way. Namely we can see that a
blow-up of subvariety X in V is nothing else but moving the line in the dual
space and creating a new pencil KY with one more singular fiber.

We summarize our findings:

Birational transformations Homological mirror symmetry
X w : Y → CP

1

Blowing up of X Moving to a less singular point in ΔY

Blowing up of X Creating a new singular fiber in KY

In the next sections we will consider the following correspondences.

A side B side
w : Y → CP

1 X
Singularities – Log canonical thresholds Rationality of X
Complexity of the sheaf of vanishing cycles Nonrationality of X
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We will also study the relations between:

A side B side
w : Y → CP

1 X
Lagrandian cycles Hodge cycles
Lagrandian thimbles algebraic cycles

4.2 Degenerations

As in the classical Moishezon–Teicher procedure the degeneration and the
smoothing data are remembered by braid factorization and it is interesting
to study how braid factorization data recover HMS. We leave this as an open
question and move to a rather basic example.

Example 4.8 We describe our procedure in the case of X = CP
2 in Fig. 4.

Example 4.9 We also describe the above procedure in the case X = CP
1×CP

1

and L = (2, 2). This is an instructive example for our purposes. Moishezon
degeneration can be summarized by Fig. 5.

Now we apply the Legendre transform to the above degeneration replacing the
two affine structures at the ends by C

2, the middle six by CP
1 × C

1 and the
central point by Del Pezzo surface of degree three in order to get the following
degeneration of the Landau–Ginzburg model (cf. Fig. 6).

Figure 7 illustrates the singular fiber over 0 in the Landau–Ginsburg
model.

z1z2z3 = 0�

z1z2z3 = t,   W = z1+ z2 + z3�

Smoothing�

⊂ C3,    W = z1 + z2 + z3{                 } 

Fig. 4. The mirror of CP
2

(1,–1)

Fig. 5. Moisheson’s degeneration
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Fig. 6. The intersection complex

Fig. 7. The fiber over 0 of the LG potential

Fig. 8. The fiber over ∞
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The fiber over infinity (compare with [3]) is a degenerate elliptic curve
consisting of eight rational curves (cf. Fig. 8).

Observe that the procedure described in step 5. can be traced in the
above examples – see Figs. 5, 6, 7. The above degeneration procedure al-
lows us to deal with the case of all hypersurfaces applying Moishezon–Teicher
degeneration.

5 Studying Non-rationality

In this section we first introduce our main tool.

5.1 The Perverse Sheaf of Vanishing Cycles and a New Technique
for Studying Non-Rationality

We suggest a procedure to geometrize the use of categories in the non-
rationality questions – perverse sheaf of vanishing cycle. We start by recalling
some results from [14]. Suppose M is a complex manifold equipped with a
proper holomorphic map f : M → Δ onto the unit disc, which is submersive
outside of 0 ∈ Δ. For simplicity we will assume that f has connected fibers.
In this situation there is a natural deformation retraction r : M → M0 of M
onto the singular fiber M0 := f−1(0) of f . The restriction rt : Mt → M0 of
the retraction r to a smooth fiber Mt := f−1(t) is the “specialization to 0”
map in topology. The complex of nearby cocycles associated with f : M → Δ
is by definition the complex of sheaves Rrt∗ZMt

∈ D−(M0,Z). Since for the
constant sheaf we have ZMt

= r∗t ZM0 , we get (by adjunction) a natural map
of complexes of sheaves

sp : ZM0 → Rrt∗r
∗
t ZM0 = Rrt∗ZMt

.

The complex of vanishing cocycles for f is by definition the complex cone(sp)
and thus fits in an exact triangle

ZM0

sp→ Rrt∗ZMt
→ cone(sp) → ZM0 [1],

of complexes in in D−(M0,Z). Note that H
i(M0, Rrt∗ZMt

) ∼= Hi(Mt,Z) and
so if we pass to hypercohomology, the exact triangle above induces a long
exact sequence

. . . Hi(M0,Z)
r∗

t→ Hi(Mt,Z) → H
i(M0, cone(sp)) → Hi+1(M0,Z) → . . . (1)

Since M0 is a projective variety, the cohomology spaces Hi(M0,C) carry the
canonical mixed Hodge structure defined by Deligne. Also, the cohomology
spaces Hi(Mt,C) of the smooth fiber of f can be equipped with the Schmid–
Steenbrink limiting mixed Hodge structure which captures essential geometric
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information about the degeneration Mt
�������� M0 . With these choices of Hodge

structures it is known from the works of Scherk and Steenbrink, that the map
r∗t in (1) is a morphism of mixed Hodge structures and that H

i(M0, cone(sp))
can be equipped with a mixed Hodge structure so that (1) is a long exact
sequence of Hodge structures.

Now given a proper holomorphic function w : Y → C we can perform
above construction near each singular fiber of w in order to obtain a complex of
vanishing cocycles supported on the union of singular fibers of w. We will write
Σ ⊂ C for the discriminant of w YΣ := Y ×C Σ for the union of all singular
fibers of w and F • ∈ D−(YΣ ,Z) for the complex of vanishing cocycles. Slightly
more generally, for any subset Φ ⊂ Σ we can look at the union YΦ of singular
fibers of w sitting over points of Φ and at the corresponding complex

F •
Φ =

⊕

σ∈Φ

F •
|Yσ

∈ D−(YΦ,Z)

of cocycles vanishing at those fibers. In the following we take the hyperco-
homology H

i(YΣ ,F •) and H
i(YΦ,F •

Φ) with their natural Scherk–Steenbrink
mixed Hodge structure. For varieties with anti-ample canonical class we have:

Theorem 5.1 Let X be a d-dimensional Fano manifold realized as a com-
plete intersection in some toric variety. Consider the mirror Landau–Ginzburg
model w : Y → C. Suppose that Y is smooth and that all singular fibers of w
are either normal crossing divisors or have isolated singularities.

Then the Deligne ip,q numbers for the mixed Hodge structure on H
•(YΣ ,F •)

satisfy the identity

ip,q(H•(YΣ ,F •)) = hd−p,q−1(X).

Similarly we have:

Theorem 5.2 Suppose that X is a variety with an ample canonical class
realized as a complete intersection in a toric variety. Let (Y,w) be the mirror
Landau–Ginzburg model. Suppose that all singular fibers of w are either normal
crossing divisors or have isolated singularities.

Then there exists a Zariski open set U ⊂ C so that Deligne’s ip,q numbers
of the mixed Hodge structure on H

•(YΣ∩U ,F •
U ) satisfy the identity

ip,q(Hi(YΣ∩U ,F
•
Σ∩U )) = hd−p,q−i+1(X).

5.2 Three Dimensional Cubic from the Point of View of HMS

We move one of our main examples – the example of three dimensional cubic.
First using the procedure discussed in previous sections we build Landau–
Ginzburg model of three dimensional cubic. Theorem 3.2 allows us to recover
the Intermediate Jacobian of the cubic. But instead of using intermediate
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Fig. 9. The singular set for the LG of a 3d cubic

Jacobian in order to study rationality we will use the perverse sheaf of van-
ishing cycles for the Landau–Ginzburg model for three dimensional cubic.

Applying the procedure described in the previous sections we get, after
smoothing, the following Landau–Ginzburg mirror:

xyuvw = (u + v + w)3.t

with potential x+ y. Here u, v, w are in CP
2 and x, y are in C

2. The singular
set W of this Landau–Ginzburg model looks as in Fig. 9.

These singularities are produced as intersection of six surfaces – see Fig. 9.
Topologically the sheaf of vanishing cycles is a fibration of tori over the

singular set described above. We desingularize the singular set of F of rational
curves with three points taken out. Then F restricted on such a rational curve
produces an S1 local system with non-trivial monodromy. Recall that [8] the
three-dimensional cubic is a conic bundle over CP

2 with a ramification curve,

K3

K3

K3

4 Blown–up ruled

surfaces

Fig. 10. K3 and arrows
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a curve of genus five. The two-sheeted covering corresponds to an odd theta
characteristic and this is exactly the reason why F restricted on such rational
curve produces a S1 local system with non-trivial monodromy. We will briefly
work out the case of a conic bundle over CP

2 with a degeneration curve – a
curve of degree five and two-sheeted covering corresponding to an even theta
characteristic. The first part of the Fig. 10 describes the structure of a conic
bundle – two CP

1 fibrations glued over the base. The second part of Fig. 10
describes Moishezon’s degeneration of the base.

Following the procedure from the previous sections we get the Landau–
Ginzburg mirror. In this case F restricted on rational curves with 3 points
taken out produces a S1 local system with trivial monodromy only – see
Fig. 10.

We arrive at:

5.3 Non-rationality Theorem for Conic Bundles

We start with the conjecture which is a theorem modulo HMS.

Theorem 5.3 Let X be a three-dimensional conic bundle and Y → C is its
Landau–Ginzburg mirror. If there exists a rational curve in the singular set
such that F restricted on it produces a local system with non-trivial mon-
odromy, then X is non-rational.

The idea of the proof of this theorem is as follows. We consider the LG
mirror Y of given conic bundle X obtained following the procedure of the pre-
vious section. We analyze the singularities of Y . The idea is that if F restricted
on the singular set S produces a local system with non-trivial monodromy then
S cannot be obtained as singular fiber obtained via Landau–Ginzburg “mirror
partner of the blow up procedure.” Using step 5 of the construction we have
the following:

Proposition 5.4 The monodromy of F restricted to the singular set is trivial
iff S corresponds to a tropical image of a smooth curve in CP

3. In other words
the singular fiber containing S comes as we move singularities from the fiber
of Y at infinity to the fiber over zero – see step 5.

The tropical schemes correspond to algebraic curves iff the following con-
ditions are satisfied:

(1) Balance – the sum all vectors coming from an intersection point is zero.
(2) Superabundance – the dimension of the moduli spaces of the tropical

version as the same as the one for the existing algebraic cycle realization.
We refer for these conditions [29]. The proof of the above proposition is

based on the fact that monodromy of F restricted to the singular set being
trivial implies (1),(2) – for more details see [23].

Remark 5.5 The analysis of the singular set of the three-dimensional cubic
demonstrates that balance condition fails.
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Remark 5.6 The proof of the above theorem is in a way “mirror image” of
Iskovskikh criteria for rationality of conic bundles [17]. Monodromy of F
restricted to the singular set being trivial implies degeneration curve being of
special type – at most trigonal or a plane quintic. Via construction described
in previous section we see that on LG mirror side these are the cases where
we make the monodromy of F restricted to the singular set being trivial.

The monodromy of F restricted to the singular set being trivial can be
reformulated in a different way. Indeed this condition implies that logcanonical
threshold of the pair Y , Y0, where Y0 is the zero fiber in Y is equal to one.
As a consequence of the theory of Prym varieties [8] we always need to check
only one fiber identified by the analysis of F . So we have:

Theorem 5.7 Let X be a three-dimensional conic bundle and Y → C is its
Landau–Ginzburg mirror. If the LC(Y, Y0) �= 1 then X is not rational.

Remark 5.8 The analysis of the singular set of the LG model for generic
three-dimensional cubic X produces LC(Y, Y0) = 1/2 a different proof of
nonrationaity of X.

We will briefly discuss one more example – a complete intersections of
hypersurfaces of degree (3, 0) and (2, 2) in CP

3 ×CP
2. This produces a three-

dimensional conic bundle X over a smooth cubic surface in CP
3 with a curve of

degeneration a curve of genus four. The intermediate Jacobian J(X) cannot
be used to detect non-rationality in this case due to the fact that J(X) is
isomorphic as a principally polarized abelian variety to a Jacobian of a curve
(see [8]). From another point the above non-rationality criterion shows that
X is not rational (for more details see [23]).

6 Non-rationality of Generic four Dimensional Cubic

In this section we will explain how the ideas developed in the previous sections
apply to the case of the four-dimensional cubic.

We start by degenerating four-dimensional cubic X to three CP
4 and

then applying our standard procedure. After smoothing we get the follow-
ing Landau–Ginzburg Mirror:

xyzuvw = (u + v + w)3 · t

with a potential x + y + z. Here u, v, w are in CP
2 and x, y, z are in C

3. The
singular set W of this Landau–Ginzburg model can be seen on Fig. 11 – it
consists of 12 rational surfaces intersecting as shown.

The following conjecture is a theorem modulo HMS.

Theorem 6.1 The generic four-dimensional cubic X is not rational.
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The proof of this theorem is again based on the analysis of perverse sheaf
of vanishing cycles F . For generic four-dimensional cubic there exists an open
rational surface in the singular set such that F restricted on it produces a
non-trivial local system with non-trivial monodromy. By the argument above
such singular fiber cannot correspond to blowing up an algebraic surface. As
it follows from the work of Kulikov there is only one fiber whose vanishing

Fig. 11. The mirror of the rational conic bundle

Fig. 12. Singular set for the LG model of the 4d cubic



144 L. Katzarkov

cycles contribute to the primitive cohomologies of X and our analysis of F
identifies this fiber. (For more details see [23].)

In a similar way as in the case of conic bundles the non-trivilaity of the
monodromy translates to the language of LC(Y, Y0).

Theorem 6.2 Let X be a four-dimensional cubic and let Y → C be its
Landau–Ginzburg mirror. If the LC(Y, Y0) �= 1 then X is not rational.

Again the above statement depends on the validity of HMS.

Remark 6.3 The analysis of the singular set of the LG model for generic four-
dimensional cubic X produces LC(Y, Y0) = 1/3.

Many examples of four-dimensional cubics have been studied by Beauville–
Donagi [6], Voisin [36], Hasset [15], Iliev [18], Kuznetsov [27]. We will analyze
some of these examples now.

Example 6.4 Example of cubics containing a plane P . In this case the singu-
lar set looks as follows – see the figure bellow. As step 5 of the construction
suggests that the appearance of only one plane implies that F has non-trivial
monodromy. In this situation LC(Y, Y0) = 1/2. Cubics with one plane contain
another Del Pezzo surface of degree 4, whose mirrors can be seen in the figure.
They project to a curve of degree 4 in P . The Landau–Ginzburg mirrors of cu-
bics containing a plane P is different from the one of a generic four-dimensional
cubic and it is obtained after algebraic degeneration and then smoothing – an
earthquake – see [24]. Simillar procedure applies to other Noether–Lefschetz
loci in the moduli space of four-dimensional cubics we study in what follows.

Example 6.5 Example of cubic containing two planes P1 and P2. In this case
the fiber Y0 of the LG model Y looks as follows:

Fig. 13. Singular set for cubics containing a plane
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As step 5 of the construction suggests appearance of two planes makes the
monodromy of F trivial and in this situation LC(Y, Y0) = 1.

Theorem 6.6 Let X be a four-dimensional cubic containing a plane P . Then
LC(Y, Y0) = 1 for its LG mirror Y iff the projection of X from P has a
section. In this case the singular set of Y is a degenerated K3 surface and X
is rational.

Example 6.7 Example of cubic containing a plane P1 and being pfaffian. In
this particular case we get a section in the projection from P which is a
singular del Pezzo surface consisting of elliptic quintic curves – see the figure
bellow. Recall that pfaffian cubics are obtained from CP

4 by blowing up a K3
surface and blowing down a scroll over a Del Pezzo surface of degree 5.

Example 6.8 Hassett’s examples containing a K3 surface – they are obtained
from a singular four-dimensional cubic by changing vanishing cycles. On the
LG mirror this results to modifying the Lefschetz thimbles. Let us restrict
ourselves to the case of C26 – cubics with Fano varieties of lines isomorphic
to symmetric power of K3 surface of degree 26.

In this case we start with a LG model of small resolution of a singular
cubic. We modify it by creating (see the table below) additional thimbles
with intersection form in H4

h2 T

h2 3 7
T 7 19 + 2e

0

Fig. 14. Singular set for cubics containing two planes
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0

Fig. 15. Singular set for a Pfaffian cubic containing a plane

Fig. 16. Singular set for cubics from C26

This produce a family of three-dimensional thimbles corresponding under
mirror Symmetry to a ruled surface T of degree 7 with e the number of double
points on T . In case of C26, e = 3. Using Torelli theorem for four-dimensional
cubics we get:

Modulo HMS we get:

Theorem 6.9 All cubics in the Hassett’s divisor C26 are rational.

The proof follows the construction described above which allows us to
recover the scroll we need to blow up.

Example 6.10 Modifications of the singular set of the LG model allows us
to construct rational cubics with Fano varieties of lines non-isomorphic to
symmetric power of K3 surfaces. In a similar way as explained in a previous
example we modify the thimbles so that Fukaya–Seidel category corresponds
to a non-commuative Poisson nad complex deformation of a K3 surface. Under
this deformation hypercohomology of F as LC(Y, Y0) stay unchanged.
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In the discussion above we have used HMS in full – we will briefly discuss
how one can try proving HMS for cubics – we will extend Seidel’s ideas from
the case of the quintic. We first have:

Conjecture 6.11 HMS holds for the total space of OCP4(3).

The next step is:

Conjecture 6.12 The Hochschild cohomology HH•(Db
0(tot(OCP4(3))) are

isomorphic to the space all homogeneous polynomials of degree three in five
variables. Here (Db

0 stands for category with support at the zero section.

The Hochschild cohomology HH•(Db
0(tot(OCP4(3)))) produce all B side de-

formations of categories of the three dimensional cubic and we have similar
phenomenon on the A side as well. For the opposite statement of HMS and
more general case see [23].

Remark 6.13 The above argument should work for any degree and for any
dimension toric hypersurfaces.

7 Homological Mirror Symmetry and Algebraic Cycles

Algebraic cycles define objects of the category Db(X). According to Homo-
logical Mirror Symmetry they define objects in FS(Y,w, ω).

We described our procedure for obtaining this mirror object in step 5 of
the construction. Full details will appear in [22], [24]. To summarize briefly,
this section suggest a way for Symplectic Geometry applications to the theory
of algebraic cycles. These applications are based on the following points:

(1) Most of the Hodge and algebraic cycles can seen in the singular set of
the Landau–Ginzburg model. This is a HMS point of view of an idea of Green
and Griffiths of an inductive approach to the Hodge conjecture [9].

(2) We enchance this approach by adding HMS and theory of tropical
shemes. We briefly demonstrate that images through HMS of algebraic and
Hodge cycles do form algebraic sets.

(3) We compare images through HMS of algebraic and Hodge cycles.

7.1 Vanishing Cycles and Tropical Geometry

In this subsection we will give examples of Lagrangian cycles which do not cor-
respond to algebraic cycles. These Lagrangians are not objects of the Fukaya
category and some of them still correspond to Hodge cycles in some toric
degenration of a higher degree embeding of CP

3.
We start with:
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h1

h2

h3

Fig. 17. Non-realizable tropical curve

Example 7.1 Let us consider a smooth plane cubic C in CP
3. We have

dimExt1(OC , OC) = 13. Now we can associate with C a tropical curve T
and let us modify it extending the horns h1, h2, h3 (see Fig. 17). Using step 5
of our construction we get a Lagrangian L and dimH1(L) = 14. This leads to
m0(L) �= 0 and therefore L it does not represent an object in Fukaya Seidel
category.

7.2 Two-Dimensional Complex Tori

Let X be a complex two-dimensional torus. As usual we have

Large complex structure limit: Going to a cusp at the boundary of the
moduli of complex tori leads to a Gromov-Hausdorff colapse of X to a real

2 dimensional torus: X ���������������������� T := R
2/Γ , where Γ

- rank 2 lattice.
Mirror symplectic torus (Y, ω): is obtained as the quotient of T ∗T by the

fiberwise action of the lattice Γ̂ ⊂ (R2)∗ of all linear functionals on R
2 that

take integral values on Γ ; ω is induced from the standard form on T ∗T .

Note:

• T can be viewed as a tropical degeneration of X.
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• Objects in Fuk(Y, ω) can be constructed as images of conormal bundles
to piecewise linear submanifolds in T .

The mirror map between the period matrices for X and the complexified
symplectic forms B +

√
−1ω on Y , can be given explicitly:

(
a b
c d

)

↔ a · d1 ∧ dx2 + b · dx3 ∧ dx2 + c · dx1 ∧ dx4 + d · dx3 ∧ dx4

We can use this mirror map to run some consistency checks for HMS in this
case. The main idea here is that the mirror map should transform Noether–
Lefschetz loci of periods (= loci of periods with extra objects in Db(X)) into
loci of complexified symplectic forms with additional objects in the Fukaya
category. We will use conormal bundles to tropical subvarieties in T to con-
struct the additional objects in Fuk(Y,B +

√
−1). We have the following

matches:

• period matrices
with b = −c

↔

⎧
⎪⎪⎪
⎨
⎪⎪⎪⎩

images of
conormal
bundles of −1

−1

⎫
⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Note that in this case the Lagrangian in Y correspomding to the above tropical
scheme has m0 �= 0. It does correspond to Hodge but non-algebraic cycle – well
known counterexample to the Hodge conjecture for complex tori in dimension
2 [37].

• period matrices with
b = c

↔

⎧
⎪⎪⎪
⎨
⎪⎪⎪⎩

images of
conormal
bundles of

⎫
⎪⎪⎪
⎬
⎪⎪⎪⎭

.

The corresponding Lagrangian in Y is the mirror image for the theta
divisor of the genus two Jacobian.

• period matrices with
b = c = 0

↔ conormal bundles of tropical
elliptic curves .

The corresponding Lagrangians in Y are the mirrors of genus one surfaces.

•
period matrices
with b = c = 0,
a = d = 1

↔

⎧
⎪⎪⎪
⎨
⎪⎪⎪⎩

image of the
conormal
bundle of

⎫
⎪⎪⎪
⎬
⎪⎪⎪⎭
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In this case a new A brane appears – a coisotropic brane. The last one is a
bit lost in the tropical interpretation. We loose some information by going to
a tropical limit. Still, as we attempt to show in [23] where we work out the
classical theory of Prym varieties and connic bundles symplectically, enough
information survives. We combine the ideas of the previous two subsections
in [22] where we study the Hodge conjecture for some Weil type of abelian
varieties in dimension 4,6,8.

The considerations above suggest the following conjectures for L a la-
grangian 4 cycle in a four-dimensional abelian variety A.

Conjecture 7.2 ([22]) If a Lefschetz thimble (cycle) L obtained via step 5
of the construction satisfies the following conditions:

(1) L satisfies balance condition and tropically looks locally as a 4 or 6
graph.

(2) The deformations of L are unobstructed.
then it does correspond to an algebraic cycle in the mirror of A.

Examples we have considered seem to suggest that in the case of four-
dimensional abelian varieties after adding big enough power of the tropical-
ization of the lagrangian corresponding to Θ2 the above conditions can be
achieved. Similarly we have:

Conjecture 7.3 The Hodge conjecture holds for four-dimensional rationally
connected varieties.

Remark 7.4 This part of the paper came after some illuminating discussions
with P. Deligne, I, Sol, R. Donagi.
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de dimension 4. C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 14, 703–706. 144

7. H. Clemens. Cohomology and obstructions II. (2002) AG 0206219.
8. H. Clemens and Ph. Griffiths. The intermediate Jacobian of the cubic threefold.

Ann. of Math. 95 (1972), no. 2, 281–356. 126, 140, 142
9. M. Green and Ph. Griffiths. Algebraic Cycles I,II. Preprints (2006). 147

10. D. Cox and S. Katz. Mirror symmetry and algebraic geometry, volume 68 of
Mathematical Surveys and Monographs. American Mathematical Society, Prov-
idence, RI, (1999). 125

11. T. deFernex. Adjunction beyond thresholds and birationally rigid hypersurfaces
(2006). AG/0604213. 126

12. L. Ein and M. Musta. Mircea Invariants of singularities of pairs. International
Congress of Mathematicians. Vol. II, 583–602, Eur. Math. Soc., Zrich, 2006.
(Reviewer: Tommaso De Fernex) 14J17 (14E15). 126

13. M. Gross and B. Siebert. Mirror Symmetry via logarithmic degeneration data.
I. J. Differential Geom. 72 (2006), no. 2, 169–338. 131

14. M. Gross and L. Katzarkov. Mirror Symmetry and vanishing cycles. in prepa-
ration. 138

15. B. Hassett. Some rational cubic fourfolds. J. Algebraic Geom. 8 (1999), no. 1,
103–114. 144

16. V.A. Iskovskikh, Y.I. Manin. Three-dimensional quartics and counterexamples
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Abstract. We develop a geometric approach to A-infinity algebras and A-infinity
categories based on the notion of formal scheme in the category of graded vector
spaces. The geometric approach clarifies several questions, e.g. the notion of ho-
mological unit or A-infinity structure on A-infinity functors. We discuss Hochschild
complexes of A-infinity algebras from geometric point of view. The chapter con-
tains homological versions of the notions of properness and smoothness of projective
varieties as well as the non-commutative version of the Hodge-to-de Rham degen-
eration conjecture. We also discuss a generalization of Deligne’s conjecture which
includes both Hochschild chains and cochains. We conclude the chapter with the
description of an action of the PROP of singular chains of the topological PROP of
two-dimensional surfaces on the Hochschild chain complex of an A-infinity algebra
with scalar product (this action is more or less equivalent to the structure of two-
dimensional Topological Field Theory associated with an “abstract” Calabi–Yau
manifold).

1 Introduction

1.1 A∞-Algebras as Spaces

The notion of A∞-algebra introduced by Stasheff (or the notion of
A∞-category introduced by Fukaya) has two different interpretations. First
one is operadic: an A∞-algebra is an algebra over the A∞-operad (one of
its versions is the operad of singular chains of the operad of intervals in the
real line). Second one is geometric: an A∞-algebra is the same as a non-
commutative formal graded manifold X over, say, field k, having a marked k-
point pt and equipped with a vector field d of degree +1 such that d|pt = 0 and
[d, d] = 0 (such vector fields are called homological). By definition the algebra
of functions on the non-commutative formal pointed graded manifold is iso-
morphic to the algebra of formal series

∑
n≥0

∑
i1,i2,...,in∈I ai1...in

xi1 ...xin
:=

∑
M aMxM of free graded variables xi, i ∈ I (the set I can be infinite). Here
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M = (i1, ..., in), n ≥ 0 is a non-commutative multi-index, i.e. an element
of the free monoid generated by I. Homological vector field makes the above
graded algebra into a complex of vector spaces. The triple (X, pt, d) is called a
non-commutative formal pointed differential-graded (or simply dg-) manifold.

It is an interesting problem to make a dictionary from the pure alge-
braic language of A∞-algebras and A∞-categories to the language of non-
commutative geometry.3 One purpose of these notes is to make few steps in
this direction.

From the point of view of Grothendieck’s approach to the notion of
“space,” our formal pointed manifolds are given by functors on graded as-
sociative Artin algebras commuting with finite projective limits. It is easy to
see that such functors are represented by graded coalgebras. These coalgebras
can be thought of as coalgebras of distributions on formal pointed manifolds.
The above-mentioned algebras of formal power series are dual to the coalge-
bras of distributions.

In the case of (small) A∞-categories considered in the subsequent paper
we will slightly modify the above definitions. Instead of one marked point one
will have a closed subscheme of disjoint points (objects) in a formal graded
manifold and the homological vector field d must be compatible with the
embedding of this subscheme as well as with the projection onto it.

1.2 Some Applications of Geometric Language

Geometric approach to A∞-algebras and A∞-categories clarifies several long-
standing questions. In particular one can obtain an explicit description of the
A∞-structure on A∞-functors. This will be explained in detail in the sub-
sequent paper. Here we make few remarks. In geometric terms A∞-functors
are interpreted as maps between non-commutative formal dg-manifolds com-
muting with homological vector fields. We will introduce a non-commutative
formal dg-manifold of maps between two such spaces. Functors are just “com-
mutative” points of the latter. The case of A∞-categories with one object
(i.e., A∞-algebras) is considered in this chapter. The general case reflects the
difference between quivers with one vertex and quivers with many vertices
(vertices correspond to objects).4 As a result of the above considerations one
can describe explicitly the A∞-structure on functors in terms of sums over
sets of trees. Among other applications of our geometric language we mention
an interpretation of the Hochschild chain complex of an A∞-algebra in terms
of cyclic differential forms on the corresponding formal pointed dg-manifold
(Sect. 7.2).

Geometric language simplifies some proofs as well. For example, Hochschild
cohomology of an A∞-category C is isomorphic to Ext•(IdC , IdC) taken in the
3 We use “formal” non-commutative geometry in tensor categories, which is differ-

ent from the non-commutative geometry in the sense of Alain Connes.
4 Another, purely algebraic approach to the A∞-structure on functors was sug-

gested in [39].
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A∞-category of endofunctors C → C. This result admits an easy proof, if one
interprets Hochschild cochains as vector fields and functors as maps (the idea
to treat Ext•(IdC , IdC) as the tangent space to deformations of the derived
category Db(C) goes back to A.Bondal).

1.3 Content of the Paper

Present paper contains two parts out of three (the last one is devoted to
A∞-categories and will appear later). Here we discuss A∞-algebras (=non-
commutative formal pointed dg-manifolds with fixed affine coordinates). We
have tried to be precise and provide details of most of the proofs.

Part I is devoted to the geometric description of A∞-algebras. We start
with basics on formal graded affine schemes, then add a homological vec-
tor field, thus arriving to the geometric definition of A∞-algebras as for-
mal pointed dg-manifolds. Most of the material is well-known in algebraic
language. We cannot completely avoid A∞-categories (subject of the sub-
sequent paper). They appear in the form of categories of A∞-modules and
A∞-bimodules, which can be defined directly.

Since in the A∞-world many notions are defined“up to quasi-isomorphism”,
their geometric meaning is not obvious. As an example we mention the no-
tion of weak unit. Basically, this means that the unit exists at the level of
cohomology only. In Sect. 4 we discuss the relationship of weak units with the
“differential-graded” version of the affine line.

We start Part II with the definition of the Hochschild complexes of A∞-
algebras. As we already mentioned, Hochschild cochain complex is interpreted
in terms of graded vector fields on the non-commutative formal affine space.
Dualizing, Hochschild chain complex is interpreted in terms of degree one
cyclic differential forms. This interpretation is motivated by [30]. It differs
from the traditional picture (see e.g. [7, 11]) where one assigns to a Hochschild
chain a0 ⊗ a1 ⊗ ...⊗ an the differential form a0da1...dan. In our approach we
interepret ai as the dual to an affine coordinate xi and the above expression
is dual to the cyclic differential 1-form x1...xndx0. We also discuss graphical
description of Hochschild chains, the differential, etc.

After that we discuss homologically smooth compact A∞-algebras. Those
are analogs of smooth projective varieties in algebraic geometry. Indeed, the
derived category Db(X) of coherent sheaves on a smooth projective variety
X is A∞-equivalent to the category of perfect modules over a homologically
smooth compact A∞-algebra (this can be obtained using the results of [5]).
The algebra contains as much information about the geometry of X as the cat-
egory Db(X) does. A good illustration of this idea is given by the “abstract”
version of Hodge theory presented in Sect. 9. It is largely conjectural topic,
which eventually should be incorporated in the theory of “non-commutative
motives.” Encoding smooth proper varieties by homologically smooth com-
pact A∞-algebras we can forget about the underlying commutative geometry
and try to develop a theory of “non-commutative smooth projective varieties”
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in an abstract form. Let us briefly explain what does it mean for the Hodge
theory. Let (C•(A,A), b) be the Hochschild chain complex of a (weakly uni-
tal) homologically smooth compact A∞-algebra A. The corresponding nega-
tive cyclic complex (C•(A,A)[[u]], b+ uB) gives rise to a family of complexes
over the formal affine line A1

form[+2] (shift of the grading reflects the fact
that the variable u has degree +2, cf. [7, 11]). We conjecture that the corre-
sponding family of cohomology groups gives rise to a vector bundle over the
formal line. The generic fiber of this vector bundle is isomorphic to periodic
cyclic homology, while the fiber over u = 0 is isomorphic to the Hochschild
homology. If compact homologically smooth A∞-algebra A corresponds to a
smooth projective variety as explained above, then the generic fiber is just
the algebraic de Rham cohomology of the variety, while the fiber over u = 0
is the Hodge cohomology. Then our conjecture becomes the classical theorem
which claims degeneration of the spectral sequence Hodge-to-de Rham.5

Last section of Part II is devoted to the relationship between moduli spaces
of points on a cylinder and algebraic structures on the Hochschild complexes.
In Sect. 11.3 we formulate a generalization of Deligne’s conjecture. Recall that
Deligne’s conjecture says (see e.g., [35]) that the Hochschild cochain complex
of an A∞-algebra is an algebra over the operad of chains on the topological
operad of little discs. In the conventional approach to non-commutative ge-
ometry Hochschild cochains correspond to polyvector fields, while Hochschild
chains correspond to de Rham differential forms. One can contract a form with
a polyvector field or take a Lie derivative of a form with respect to a polyvec-
tor field. This geometric point of view leads to a generalization of Deligne’s
conjecture which includes Hochschild chains equipped with the structure of
(homotopy) module over cochains and to the “Cartan type” calculus which
involves both chains and cochains (cf. [11, 48]). We unify both approaches un-
der one roof formulating a theorem which says that the pair consisting of the
Hochschild chain and Hochschild cochain complexes of the same A∞-algebra
is an algebra over the colored operad of singular chains on configurations of
discs on a cylinder with marked points on each of the boundary circles.6

Sections 10 and 11.6 are devoted to A∞-algebras with scalar product,
which is the same as non-commutative formal symplectic manifolds. In Sect. 10
we also discuss a homological version of this notion and explain that it corre-
sponds to the notion of Calabi–Yau structure on a manifold. In Sect. 11.6 we
define an action of the PROP of singular chains of the topological PROP of
smooth oriented two-dimensional surfaces with boundaries on the Hochschild
chain complex of an A∞-algebra with scalar product. If in addition A is homo-
logically smooth and the spectral sequence Hodge-to-de Rham degenerates,
then the above action extends to the action of the PROP of singular chains

5 In a recent preprint [24], D. Kaledin claims the proof of our conjecture. He uses
a different approach.

6 After our paper was finished we received the paper [49] where the authors proved
an equivalent result.
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on the topological PROP of stable two-dimensional surfaces. This is essen-
tially equivalent to a structure of two-dimensional Cohomological TFT (simi-
lar ideas have been developed by Kevin Costello, see [8]). More details and an
application of this approach to the calculation of Gromov–Witten invariants
will be given in [22].

1.4 Generalization to A∞-Categories

Let us say few words about the subsequent paper which is devoted to
A∞-categories. The formalism of present paper admits a straightforward gen-
eralization to the case of A∞-categories. The latter should be viewed as non-
commutative formal dg-manifolds with a closed marked subscheme of objects.
Although some parts of the theory of A∞-categories admit nice interpreta-
tion in terms of non-commutative geometry, some other still wait for it. This
includes e.g. triangulated A∞-categories. We will present the theory of tri-
angulated A∞-categories from the point of view of A∞-functors from “ele-
mentary” categories to a given A∞-category (see a summary in [33, 46, 47]).
Those “elementary” categories are, roughly speaking, derived categories of
representations of quivers with small number of vertices. Our approach has
certain advantages over the traditional one. For example the complicated “oc-
tahedron axiom” admits a natural interpretation in terms of functors from the
A∞-category associated with the quiver of the Dynkin diagram A2 (there are
six indecomposible objects in the category Db(A2−mod) corresponding to six
vertices of the octahedron). In some sections of the paper on A∞-categories we
have not been able to provide pure geometric proofs of the results, thus relying
on less flexible approach which uses differential-graded categories (see [14]).
As a compromise, we will present only part of the theory of A∞-categories,
with sketches of proofs, which are half-geomeric and half-algebraic, postponing
more coherent exposition for future publications.

In the present and subsequent studies we mostly consider A∞-algebras and
categories over a field of characteristic zero. This assumption simplifies many
results, but also makes some other less general. We refer the reader to [39, 40]
for a theory over a ground ring instead of ground field (the approach of [39, 40]
is pure algebraic and different from ours). Most of the results of present paper
are valid for an A∞-algebra A over the unital commutative associative ring
k, as long as the graded module A is flat over k. More precisely, the results
of Part I remain true except of the results of Sect. 3.2 (the minimal model
theorem). In these two cases we assume that k is a field of characteristic
zero. Constructions of Part II work over a commutative ring k. The results
of Sect. 10 are valid (and the conjectures are expected to be valid) over a
field of characteristic zero. Algebraic version of Hodge theory from Sect. 9
and the results of Sect. 11 are formulated for an A∞-algebra over the field of
characteristic zero, although the Conjecture 2 is expected to be true for any
Z-flat A∞-algebra.
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Part I: A∞A∞A∞-Algebras and Non-commutative dg-Manifolds

2 Coalgebras and Non-commutative Schemes

Geometric description of A∞-algebras will be given in terms of geometry of
non-commutative ind-affine schemes in the tensor category of graded vector
spaces (we will use Z-grading or Z/2-grading). In this section we are going
to describe these ind-schemes as functors from finite-dimensional algebras
to sets (cf. with the description of formal schemes in [20]). More precisely,
such functors are represented by counital coalgebras. Corresponding geometric
objects are called non-commutative thin schemes.

2.1 Coalgebras as Functors

Let k be a field and C be a k-linear Abelian symmetric monoidal category
(we will call such categories tensor), which admits infinite sums and products
(we refer to [13] about all necessary terminology of tensor categories). Then
we can do simple linear algebra in C, in particular, speak about associative
algebras or coassociative coalgebras. For the rest of the paper, unless we say
otherwise, we will assume that either C = V ectZk , which is the tensor category
of Z-graded vector spaces V = ⊕n∈ZVn, or C = V ect

Z/2
k , which is the tensor

category of Z/2-graded vector spaces (then V = V0⊕V1), or C = V ectk, which
is the tensor category of k-vector spaces. Associativity morphisms in V ectZk
or V ect

Z/2
k are identity maps and commutativity morphisms are given by the

Koszul rule of signs: c(vi ⊗ vj) = (−1)ijvj ⊗ vi, where vn denotes an element
of degree n.

We will denote by Cf the Artinian category of finite-dimensional objects in
C (i.e. objects of finite length). The category AlgCf of unital finite-dimensional
algebras is closed with respect to finite projective limits. In particular, finite
products and finite fiber products exist in AlgCf . One has also the categories
CoalgC (resp. CoalgCf ) of coassociative counital (resp. coassociative counital
finite-dimensional) coalgebras. In the case C = V ectk we will also use the
notation Algk, Algf

k , Coalgk and Coalgf
k for these categories. The category

CoalgCf = Algop
Cf admits finite inductive limits.

We will need simple facts about coalgebras. We will present proofs in the
Appendix for completness.

Theorem 2.1 Let F : AlgCf → Sets be a covariant functor commuting with
finite projective limits. Then it is isomorphic to a functor of the type A 
→
HomCoalgC (A∗, B) for some counital coalgebra B. Moreover, the category of
such functors is equivalent to the category of counital coalgebras.

Proposition 2.2 If B ∈ Ob(CoalgC), then B is a union of finite-dimensional
counital coalgebras.
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Objects of the category CoalgCf = Algop
Cf can be interpreted as “very thin”

non-commutative affine schemes (cf. with finite schemes in algebraic geome-
try). Proposition 1 implies that the category CoalgC is naturally equivalent
to the category of ind-objects in CoalgCf .

For a counital coalgebra B we denote by Spc(B) (the “spectrum” of the
coalgebra B) the corresponding functor on the category of finite-dimensional
algebras. A functor isomorphic to Spc(B) for some B is called a non-
commutative thin scheme. The category of non-commutative thin schemes
is equivalent to the category of counital coalgebras. For a non-commutative
scheme X we denote by BX the corresponding coalgebra. We will call it the
coalgebra of distributions on X. The algebra of functions on X is by definition
O(X) = B∗

X .
Non-commutative thin schemes form a full monoidal subcategory NAff th

C
⊂ Ind(NAffC) of the category of non-commutative ind-affine schemes (see
Appendix). Tensor product corresponds to the tensor product of coalgebras.

Let us consider few examples.

Example 2.3 Let V ∈ Ob(C). Then T (V ) = ⊕n≥0V
⊗n carries a structure of

counital cofree coalgebra in C with the coproduct Δ(v0 ⊗ ...⊗ vn) =
∑

0≤i≤n

(v0⊗...⊗vi)⊗(vi+1⊗...⊗vn). The corresponding non-commutative thin scheme
is called non-commutative formal affine space Vform (or formal neighborhood
of zero in V ).

Definition 2.4 A non-commutative formal manifold X is a non-commutative
thin scheme isomorphic to some Spc(T (V )) from the example above. The
dimension of X is defined as dimkV .

The algebra O(X) of functions on a non-commutative formal manifold
X of dimension n is isomorphic to the topological algebra k〈〈x1, ..., xn〉〉 of
formal power series in free graded variables x1, ..., xn.

Let X be a non-commutative formal manifold and pt : k → BX a k-point
in X,

Definition 2.5 The pair (X, pt) is called a non-commutative formal pointed
manifold. If C = V ectZk it will be called non-commutative formal pointed
graded manifold. If C = V ect

Z/2
k it will be called non-commutative formal

pointed supermanifold.

The following example is a generalization of the Example 1 (which corre-
sponds to a quiver with one vertex).

Example 2.6 Let I be a set and BI = ⊕i∈I1i be the direct sum of trivial
coalgebras. We denote by O(I) the dual topological algebra. It can be thought
of as the algebra of functions on a discrete non-commutative thin scheme I.

A quiver Q in C with the set of vertices I is given by a collection of objects
Eij ∈ C, i, j ∈ I called spaces of arrows from i to j. The coalgebra of Q is
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the coalgebra BQ generated by the O(I) − O(I)-bimodule EQ = ⊕i,j∈IEij ,
i.e. BQ " ⊕n≥0 ⊕i0,i1,...,in∈I Ei0i1 ⊗ ... ⊗ Ein−1in

:= ⊕n≥0B
n
Q, B0

Q := BI .
Elements of B0

Q are called trivial paths. Elements of Bn
Q are called paths of

the length n. Coproduct is given by the formula

Δ(ei0i1⊗...⊗ein−1in
) = ⊕0≤m≤n(ei0i1⊗...⊗eim−1im

)⊗(eimim+1 ...⊗...⊗ein−1in
),

where for m = 0 (resp. m = n) we set ei−1i0 = 1i0 (resp. einin+1 = 1in
).

In particular, Δ(1i) = 1i ⊗ 1i, i ∈ I and Δ(eij) = 1i ⊗ eij + eij ⊗ 1j , where
eij ∈ Eij and 1m ∈ BI corresponds to the image of 1 ∈ 1 under the natural
embedding into ⊕m∈I1.

The coalgebra BQ has a counit ε such that ε(1i) = 1i and ε(x) = 0 for
x ∈ Bn

Q, n ≥ 1.

Example 2.7 (Generalized quivers). Here we replace 1i by a unital simple
algebra Ai (e.g. Ai = Mat(ni,Di), where Di is a division algebra). Then Eij

are Ai −mod−Aj-bimodules. We leave as an exercise to the reader to write
down the coproduct (one uses the tensor product of bimodules) and to check
that we indeed obtain a coalgebra.

Example 2.8 Let I be a set. Then the coalgebra BI = ⊕i∈I1i is a direct sum
of trivial coalgebras, isomorphic to the unit object in C. This is a special case
of Example 2. Note that in general BQ is a O(I) − O(I)-bimodule.

Example 2.9 Let A be an associative unital algebra. It gives rise to the functor
FA : CoalgCf → Sets such that FA(B) = HomAlgC (A,B∗). This functor de-
scribes finite-dimensional representations of A. It commutes with finite direct
limits, hence it is representable by a coalgebra. If A = O(X) is the algebra
of regular functions on the affine scheme X, then in the case of algebraically
closed field k the coalgebra representing FA is isomorphic to ⊕x∈X(k)O∗

x,X ,
where O∗

x,X denotes the topological dual to the completion of the local ring
Ox,X . If X is smooth of dimension n, then each summand is isomorphic to the
topological dual to the algebra of formal power series k[[t1, ..., tn]]. In other
words, this coalgebra corresponds to the disjoint union of formal neighbor-
hoods of all points of X.

Remark 2.10 One can describe non-commutative thin schemes more precisely
by using structure theorems about finite-dimensional algebras in C. For exam-
ple, in the case C = V ectk any finite-dimensional algebra A is isomorphic to a
sum A0⊕r, where A0 is a finite sum of matrix algebras ⊕iMat(ni,Di), Di are
division algebras and r is the radical. In Z-graded case a similar decomposition
holds, with A0 being a sum of algebras of the type End(Vi)⊗Di,where Vi are
some graded vector spaces and Di are division algebras of degree zero. In Z/2-
graded case the description is slightly more complicated. In particular A0 can
contain summands isomorphic to (End(Vi) ⊗Di) ⊗Dλ, where Vi and Di are
Z/2-graded analogs of the above-described objects and Dλ is a 1|1-dimensional
superalgebra isomorphic to k[ξ]/(ξ2 = λ), deg ξ = 1, λ ∈ k∗/(k∗)2.
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2.2 Smooth Thin Schemes

Recall that the notion of an ideal has meaning in any abelian tensor category.
A two-sided ideal J is called nilpotent if the multiplication map J⊗n → J has
zero image for a sufficiently large n.

Definition 2.11 Counital coalgebra B in a tensor category C is called smooth
if the corresponding functor FB : AlgCf → Sets, FB(A) = HomCoalgC (A∗, B)
satisfies the following lifting property: for any two-sided nilpotent ideal J ⊂ A
the map FB(A) → FB(A/J) induced by the natural projection A → A/J is
surjective. Non-commutative thin scheme X is called smooth if the corre-
sponding counital coalgebra B = BX is smooth.

Proposition 2.12 For any quiver Q in C the corresponding coalgebra BQ is
smooth.

Proof. First let us assume that the result holds for all finite quivers. We
remark that if A is finite-dimensional and Q is an infinite quiver then for any
morphism f : A∗ → BQ we have: f(A∗) belongs to the coalgebra of a finite
sub-quiver of Q. Since the lifting property holds for the latter, the result
follows. Finally, we need to prove the Proposition for a finite quiver Q . Let us
choose a basis {eij,α} of each space of arrows Eij . Then for a finite-dimensional
algebra A the set FBQ

(A) is isomorphic to the set {((πi), xij,α)i,j∈I}, where
πi ∈ A, π2

i = πi, πiπj = πjπi, if i �= j,
∑

i∈I πi = 1A and xij,α ∈ πiAπj satisfy
the condition: there exists N ≥ 1 such that xi1j1,α1 ...ximjm,αm

= 0 for all
m ≥ N . Let now J ⊂ A be the nilpotent ideal from the definition of smooth
coalgebra and (π′

i, x
′
ij,α) be elements of A/J satisfying the above constraints.

Our goal is to lift them to A. We can lift the them to the projectors πi and
elements xij,α for A in such a way that the above constraints are satisfied
except of the last one, which becomes an inclusion xi1j1,α1 ...ximjm,αm

∈ J for
m ≥ N . Since Jn = 0 in A for some n we see that xi1j1,α1 ...ximjm,αm

= 0 in
A for m ≥ nN . This proves the result. �

Remark 2.13 (a) According to Cuntz and Quillen [10] a non-commutative
algebra R in V ectk is called smooth if the functor Algk → Sets, FR(A) =
HomAlgk

(R,A) satisfies the lifting property from the Definition 3 applied to
all (not only finite-dimensional) algebras. We remark that if R is smooth in
the sense of Cuntz and Quillen then the coalgebra Rdual representing the
functor Coalgf

k → Sets,B 
→ HomAlgf
k
(R,B∗) is smooth. One can prove that

any smooth coalgebra in V ectk is isomorphic to a coalgebra of a generalized
quiver (see Example 3).

(b) Almost all examples of non-commutative smooth thin schemes consid-
ered in this paper are formal pointed manifolds, i.e. they are isomorphic to
Spc(T (V )) for some V ∈ Ob(C). It is natural to try to “globalize” our results
to the case of non-commutative “smooth” schemes X which satisfy the prop-
erty that the completion of X at a “commutative” point gives rise to a formal
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pointed manifold in our sense. An example of the space of maps is considered
in the next subsection.

(c) The tensor product of non-commutative smooth thin schemes is typi-
cally non-smooth, since it corresponds to the tensor product of coalgebras (the
latter is not a categorical product).

Let now x be a k-point of a non-commutative smooth thin scheme X. By
definition x is a homomorphism of counital coalgebras x : k → BX (here k = 1
is the trivial coalgebra corresponding to the unit object). The completion X̂x

of X at x is a formal pointed manifold which can be described such as follows.
As a functor FX̂x

: Algf
C → Sets it assigns to a finite-dimensional algebra A

the set of such homomorphisms of counital colagebras f : A∗ → BX which are
compositions A∗ → A∗

1 → BX , where A∗
1 ⊂ BX is a conilpotent extension of x

(i.e., A1 is a finite-dimensional unital nilpotent algebra such that the natural
embedding k → A∗

1 → BX coinsides with x : k → BX).
Description of the coalgebra BX̂x

is given in the following Proposition.

Proposition 2.14 The formal neighborhood X̂x corresponds to the counital
sub-coalgebra BX̂x

⊂ BX which is the preimage under the natural projection
BX → BX/x(k) of the sub-coalgebra consisting of conilpotent elements in the
non-counital coalgebra B/x(k). Moreover, X̂x is universal for all morphisms
from nilpotent extensions of x to X.

We discuss in Appendix a more general construction of the completion
along a non-commutative thin subscheme.

We leave as an exercise to the reader to prove the following result.

Proposition 2.15 Let Q be a quiver and pti ∈ X = XBQ
corresponds to a

vertex i ∈ I. Then the formal neighborhood X̂pti
is a formal pointed manifold

corresponding to the tensor coalgebra T (Eii) = ⊕n≥0E
⊗n
ii , where Eii is the

space of loops at i.

2.3 Inner Hom

Let X,Y be non-commutative thin schemes and BX , BY the corresponding
coalgebras.

Theorem 2.16 The functor AlgCf → Sets such that

A 
→ HomCoalgC (A∗ ⊗BX , BY )

is representable. The corresponding non-commutative thin scheme is denoted
by Maps(X,Y ).

Proof. It is easy to see that the functor under consideration commutes with
finite projective limits. Hence it is of the type A 
→ HomCoalgC (A∗, B), where
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B is a counital coalgebra (Theorem 1). The corresponding non-commutative
thin scheme is the desired Maps(X,Y ). �

It follows from the definition that Maps(X,Y ) = Hom(X,Y ), where the
inner Hom is taken in the symmetric monoidal category of non-commutative
thin schemes. By definition Hom(X,Y ) is a non-commutative thin scheme,
which satisfies the following functorial isomorphism for any Z ∈ Ob(NAff th

C ):

HomNAffth
C

(Z,Hom(X,Y )) " HomNAffth
C

(Z ⊗X,Y ).

Note that the monoidal category NAffC of all non-commutative affine
schemes does not have inner Hom′s even in the case C = V ectk. If C = V ectk
then one can define Hom(X,Y ) for X = Spec(A), where A is a finite-
dimensional unital algebra and Y is arbitrary. The situation is similar to
the case of “commutative” algebraic geometry, where one can define an affine
scheme of maps from a scheme of finite length to an arbitrary affine scheme.
On the other hand, one can show that the category of non-commutative ind-
affine schemes admit inner Hom’s (the corresponding result for commutative
ind-affine schemes is known).

Remark 2.17 The non-commutative thin scheme Maps(X,Y ) gives rise to a
quiver, such that its vertices are k-points of Maps(X,Y ). In other words,
vertices correspond to homomorphisms BX → BY of the coalgebras of dis-
tributions. Taking the completion at a k-point we obtain a formal pointed
manifold. More generally, one can take a completion along a subscheme of
k-points, thus arriving to a non-commutative formal manifold with a marked
closed subscheme (rather than one point). This construction will be used in
the subsequent paper for the desription of the A∞-structure on A∞-functors.
We also remark that the space of arrows Eij of a quiver is an example of
the geometric notion of bitangent space at a pair of k-points i, j. It will be
discussed in the subsequent paper.

Example 2.18 Let Q1 = {i1} and Q2 = {i2} be quivers with one vertex
such that Ei1i1 = V1, Ei2i2 = V2, dimVi < ∞, i = 1, 2. Then BQi

=
T (Vi), i = 1, 2 and Maps(XBQ1

,XBQ2
) corresponds to the quiver Q such

that the set of vertices IQ = HomCoalgC (BQ1 , BQ2) =
∏

n≥1 Hom(V ⊗n
1 , V2)

and for any two vertices f, g ∈ IQ the space of arrows is isomorphic to
Ef,g =

∏
n≥0 Hom(V ⊗n

1 , V2).

Definition 2.19 Homomorphism f : B1 → B2 of counital coalgebras is called
a minimal conilpotent extension if it is an inclusion and the induced coproduct
on the non-counital coalgebra B2/f(B1) is trivial.

Composition of minimal conilpotent extensions is simply called a conilpo-
tent extension. Definition 2.2.1 can be reformulated in terms of finite-dimen-
sional coalgebras. Coalgebra B is smooth if the functor C 
→ HomCoalgC (C,B)
satisfies the lifting property with respect to conilpotent extensions of finite-
dimensional counital coalgebras. The following proposition shows that we can
drop the condition of finite-dimensionality.
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Proposition 2.20 If B is a smooth coalgebra then the functor CoalgC →
Sets such that C 
→ HomCoalgC (C,B) satisfies the lifting property for conilpo-
tent extensions.

Proof. Let f : B1 → B2 be a conilpotent extension, and g: B1 → B and
be an arbitrary homomorphism of counital algebras. It can be thought of as
homomorphism of f(B1) → B. We need to show that g can be extended
to B2. Let us consider the set of pairs (C, gC) such f(B1) ⊂ C ⊂ B2 and
gC : C → B defines an extension of counital coalgebras, which coincides with
g on f(B1). We apply Zorn lemma to the partially ordered set of such pairs and
see that there exists a maximal element (Bmax, gmax) in this set. We claim that
Bmax = B2. Indeed, let x ∈ B2 \Bmax. Then there exists a finite-dimensional
coalgebra Bx ⊂ B2 which contains x. Clearly Bx is a conilpotent extension
of f(B1) ∩ Bx. Since B is smooth we can extend gmax : f(B1) ∩ Bx → B to
gx : Bx → B and,finally to gx,max : Bx + Bmax → B. This contradicts to
maximality of (Bmax, gmax). Proposition is proved. �

Proposition 2.21 If X,Y are non-commutative thin schemes and Y is
smooth then Maps(X,Y ) is also smooth.

Proof. Let A → A/J be a nilpotent extension of finite-dimensional unital
algebras. Then (A/J)∗⊗BX → A∗⊗BX is a conilpotent extension of counital
coalgebras. Since BY is smooth then the previous Proposition implies that the
induced map HomCoalgC (A∗ ⊗ BX , BY ) → HomCoalgC ((A/J)∗ ⊗ BX , BY ) is
surjective. This concludes the proof. �

Let us consider the case when (X, ptX) and (Y, ptY ) are non-commutative
formal pointed manifolds in the category C = V ectZk . One can describe “in
coordinates” the non-commutative formal pointed manifold, which is the for-
mal neighborhood of a k-point of Maps(X,Y ). Namely, let X = Spc(B)
and Y = Spc(C), and let f ∈ HomNAffth

C
(X,Y ) be a morphism preserving

marked points. Then f gives rise to a k-point of Z = Maps(X,Y ). Since O(X)
and O(Y ) are isomorphic to the topological algebras of formal power series in
free graded variables, we can choose sets of free topological generators (xi)i∈I

and (yj)j∈J for these algebras. Then we can write for the corresponding ho-
momorphism of algebras f∗ : O(Y ) → O(X):

f∗(yj) =
∑

I

c0j,MxM ,

where c0j,M ∈ k and M = (i1, ..., in), is ∈ I is a non-commutative multi-index
(all the coefficients depend on f , hence a better notation should be cf,0

j,M ).
Notice that for M = 0 one gets c0j,0 = 0 since f is a morphism of pointed
schemes. Then we can consider an “infinitesimal deformation” fdef of f

f∗
def (yj) =

∑

M

(c0j,M + δc0j,M )xM ,
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where δc0j,M are new variables commuting with all xi. Then δc0j,M can be
thought of as coordinates in the formal neighborhood of f . More pedan-
tically it can be spelled out such as follows. Let A = k ⊕ m be a finite-
dimensional graded unital algebra, where m is a graded nilpotent ideal of
A. Then an A-point of the formal neighborhood Uf of f is a morphism
φ ∈ HomNAffth

C
(Spec(A) ⊗ X,Y ), such that it reduces to f modulo the

nilpotent ideal m. We have for the corresponding homomorphism of algebras:

φ∗(yj) =
∑

M

cj,MxM ,

where M is a non-commutative multi-index, cj,M ∈ A, and cj,M 
→ c0j,M
under the natural homomorphism A → k = A/m. In particular cj,0 ∈ m.
We can treat coefficients cj,M as A-points of the formal neighborhood Uf of
f ∈ Maps(X,Y ).

Remark 2.22 The above definitions will play an important role in the subse-
quent paper, where the non-commutative smooth thin scheme Spc(BQ) will be
assigned to a (small) A∞-category, the non-commutative smooth thin scheme
Maps(Spc(BQ1), Spc(BQ2)) will be used for the description of the category of
A∞-functors between A∞-categories and the formal neighborhood of a point
in the space Maps(Spc(BQ1), Spc(BQ2)) will correspond to natural transfor-
mations between A∞-functors.

3 A∞-Algebras

3.1 Main Definitions

From now on assume that C = V ectZk unless we say otherwise. If X is a thin
scheme then a vector field on X is, by definition, a derivation of the coalgebra
BX . Vector fields form a graded Lie algebra V ect(X).

Definition 3.1 A non-commutative thin differential-graded (dg for short)
scheme is a pair (X, d) where X is a non-commutative thin scheme and d is a
vector field on X of degree +1 such that [d, d] = 0.

We will call the vector field d homological vector field.
Let X be a formal pointed manifold and x0 be its unique k-point. Such

a point corresponds to a homomorphism of counital coalgebras k → BX . We
say that the vector field d vanishes at x0 if the corresponding derivation kills
the image of k.

Definition 3.2 A non-commutative formal pointed dg-manifold is a pair
((X,x0), d) such that (X,x0) is a non-commutative formal pointed graded
manifold and d = dX is a homological vector field on X such that d|x0 = 0.
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Homological vector field d has an infinite Taylor decomposition at x0. More
precisely, let Tx0X be the tangent space at x0. It is canonically isomorphic
to the graded vector space of primitive elements of the coalgebra BX , i.e.
the set of a ∈ BX such that Δ(a) = 1 ⊗ a + a ⊗ 1 where 1 ∈ BX is the
image of 1 ∈ k under the homomorphism of coalgebras x0 : k → BX (see
Appendix for the general definition of the tangent space). Then d := dX

gives rise to a (non-canonically defined) collection of linear maps d
(n)
X := mn :

Tx0X
⊗n → Tx0X[1], n ≥ 1 called Taylor coefficients of d which satisfy a

system of quadratic relations arising from the condition [d, d] = 0. Indeed,
our non-commutative formal pointed manifold is isomorphic to the formal
neighborhood of zero in Tx0X, hence the corresponding non-commutative thin
scheme is isomorphic to the cofree tensor coalgebra T (Tx0X) generated by
Tx0X. Homological vector field d is a derivation of a cofree coalgebra, hence
it is uniquely determined by a sequence of linear maps mn.

Definition 3.3 Non-unital A∞-algebra over k is given by a non-commutative
formal pointed dg-manifold (X,x0, d) together with an isomorphism of couni-
tal coalgebras BX " T (Tx0X).

Choice of an isomorphism with the tensor coalgebra generated by the
tangent space is a non-commutative analog of a choice of affine structure in
the formal neighborhood of x0.

From the above definitions one can recover the traditional one. We present
it below for convenience of the reader.

Definition 3.4 A structure of an A∞-algebra on V ∈ Ob(V ectZk ) is given by
a derivation d of degree +1 of the non-counital cofree coalgebra T+(V [1]) =
⊕n≥1V

⊗n such that [d, d] = 0 in the differential-graded Lie algebra of coalge-
bra derivations.

Traditionally the Taylor coefficients of d = m1+m2+· · · are called (higher)
multiplications for V . The pair (V,m1) is a complex of k-vector spaces called
the tangent complex. If X = Spc(T (V )) then V [1] = T0X and m1 = d

(1)
X is

the first Taylor coefficient of the homological vector field dX . The tangent
cohomology groups Hi(V,m1) will be denoted by Hi(V ). Clearly H•(V ) =
⊕i∈ZH

i(V ) is an associative (non-unital) algebra with the product induced
by m2.

An important class of A∞-algebras consists of unital (or strictly unital)
and weakly unital (or homologically unital) ones. We are going to discuss the
definition and the geometric meaning of unitality later.

Homomorphism of A∞-algebras can be described geometrically as a mor-
phism of the corresponding non-commutative formal pointed dg-manifolds. In
the algebraic form one recovers the following traditional definition.

Definition 3.5 A homomorphism of non-unital A∞-algebras (A∞-morphism
for short) (V, dV ) → (W,dW ) is a homomorphism of differential-graded coal-
gebras T+(V [1]) → T+(W [1]).
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A homomorphism f of non-unital A∞-algebras is determined by its Taylor
coefficients fn : V ⊗n → W [1 − n], n ≥ 1 satisfying the system of equations∑

1≤l1<...,<li=n(−1)γimW
i (fl1(a1, ..., al1),

fl2−l1(al1+1, ..., al2), ..., fn−li−1(an−li−1+1, ..., an)) =∑
s+r=n+1

∑
1≤j≤s(−1)εsfs(a1, ..., aj−1,m

V
r (aj , ..., aj+r−1), aj+r, ..., an).

Here εs = r
∑

1≤p≤j−1 deg(ap)+j−1+r(s−j), γi =
∑

1≤p≤i−1(i−p)(lp−
lp−1 − 1) +

∑
1≤p≤i−1 ν(lp)

∑
lp−1+1≤q≤lp

deg(aq), where we use the notation
ν(lp) =

∑
p+1≤m≤i(1 − lm + lm−1) and set l0 = 0.

Remark 3.6 All the above definitions and results are valid for Z/2-graded
A∞-algebras as well. In this case we consider formal manifolds in the category
V ect

Z/2
k of Z/2-graded vector spaces. We will use the correspodning results

without further comments. In this case one denotes by ΠA the Z/2-graded
vector space A[1].

3.2 Minimal Models of A∞-Algebras

One can do simple differential geometry in the symmetric monoidal category
of non-commutative formal pointed dg-manifolds. New phenomenon is the
possibility to define some structures up to a quasi-isomorphism.

Definition 3.7 Let f : (X, dX , x0) → (Y, dY , y0) be a morphism of non-
commutative formal pointed dg-manifolds. We say that f is a quasi-isomorp-
hism if the induced morphism of the tangent complexes f1 : (Tx0X, d

(1)
X ) →

(Ty0Y, d
(1)
Y ) is a quasi-isomorphism. We will use the same terminology for the

corresponding A∞-algebras.

Definition 3.8 An A∞-algebra A (or the corresponding non-commutative
formal pointed dg-manifold) is called minimal if m1 = 0. It is called con-
tractible if mn = 0 for all n ≥ 2 and H•(A,m1) = 0.

The notion of minimality is coordinate independent, while the notion of
contractibility is not.

It is easy to prove that any A∞-algebra A has a minimal model MA,
i.e. MA is minimal and there is a quasi-isomorphism MA → A (the proof
is similar to the one from [29, 36]). The minimal model is unique up to an
A∞-isomorphism. We will use the same terminology for non-commutative for-
mal pointed dg-manifolds. In geometric language a non-commutative formal
pointed dg-manifold X is isomorphic to a categorical product (i.e. correspond-
ing to the completed free product of algebras of functions) Xm ×Xlc, where
Xm is minimal and Xlc is linear contractible. The above-mentioned quasi-
isomorphism corresponds to the projection X → Xm.

The following result (homological inverse function theorem) can be easily
deduced from the above product decomposition.
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Proposition 3.9 If f : A → B is a quasi-isomorphism of A∞-algebras then
there is a (non-canonical) quasi-isomorphism g : B → A such that fg and gf
induce identity maps on zero cohomologies H0(B) and H0(A) respectively.

3.3 Centralizer of an A∞-Morphism

Let A and B be two A∞-algebras, and (X, dX , x0) and (Y, dY , y0) be the
corresponding non-commutative formal pointed dg-manifolds. Let f : A →
B be a morphism of A∞-algebras. Then the corresponding k-point f ∈
Maps(Spc(A), Spc(B)) gives rise to the formal pointed manifold Uf =
M̂aps(X,Y )f (completion at the point f). Functoriality of the construction
of Maps(X,Y ) gives rise to a homomorphism of graded Lie algebras of vector
fields V ect(X)⊕V ect(Y ) → V ect(Maps(X,Y )). Since [dX , dY ] = 0 on X⊗Y ,
we have a well-defined homological vector field dZ on Z = Maps(X,Y ). It
corresponds to dX ⊗ 1Y − 1X ⊗dY under the above homomorphism. It is easy
to see that dZ |f = 0 and in fact morphisms f : A → B of A∞-algebras are
exactly zeros of dZ . We are going to describe below the A∞-algebra Centr(f)
(centralizer of f) which corresponds to the formal neighborhood Uf of the
point f ∈ Maps(X,Y ). We can write (see Sect. 2.3 for the notation)

cj,M = c0j,M + rj,M ,

where c0j,M ∈ k and rj,M are formal non-commutative coordinates in the
neighborhood of f . Then the A∞-algebra Centr(f) has a basis (rj,M )j,M and
the A∞-structure is defined by the restriction of the homological vector dZ to
Uf .

As a Z-graded vector space Centr(f) =
∏

n≥0 HomV ectZk
(A⊗n, B)[−n].

Let φ1, ..., φn ∈ Centr(f) and a1, ..., aN ∈ A. Then we have mn(φ1, ..., φn)
(a1, ..., aN ) = I + R. Here I corresponds to the term = 1X ⊗ dY and is given
by the following expression

f

a1 a

φ1
φn

f

+
root

φi

I = Σ
trees T

–+ m j
B
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Similarly R corresponds to the term dX ⊗ 1Y and is described by the
following figure

R = Σ

a1 aN

e

Am j .
edges e,
trees T

root
+

φ1

–+

Comments on the figure describing I.

(1) We partition a sequence (a1, ..., aN ) into l ≥ n non-empty subsequences.
(2) We mark n of these subsequences counting from the left (the set can be

empty).
(3) We apply multilinear map φi, 1 ≤ i ≤ n to the ith marked group of

elements al.
(4) We apply Taylor coefficients of f to the remaining subsequences.

Notice that the term R appear only for m1 (i.e. n = 1). For all subsequences
we have n ≥ 1.

From geometric point of view the term I corresponds to the vector field
dY , while the term R corresponds to the vector field dX .

Proposition 3.10 Let dCentr(f) be the derivation corresponding to the image
of dX ⊕ dY in Maps(X,Y ).

One has [dCentr(f), dCentr(f)] = 0.

Proof. Clear. �

Remark 3.11 The A∞-algebra Centr(f) and its generalization to the case of
A∞-categories discussed in the subsequent paper provide geometric descrip-
tion of the notion of natural transformaion in the A∞-case (see [39, 40] for a
pure algebraic approach to this notion).

4 Non-Commutative dg-line L and Weak Unit

4.1 Main Definition

Definition 4.1 An A∞-algebra is called unital (or strictly unital) if there
exists an element 1 ∈ V of degree zero, such that m2(1, v) = m2(v, 1) and
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mn(v1, ..., 1, ..., vn) = 0 for all n �= 2 and v, v1, ..., vn ∈ V . It is called weakly
unital (or homologically unital) if the graded associative unital algebra H•(V )
has a unit 1 ∈ H0(V ).

The notion of strict unit depends on a choice of affine coordinates on
Spc(T (V )), while the notion of weak unit is “coordinate free.” Moreover, one
can show that a weakly unital A∞-algebra becomes strictly unital after an
appropriate change of coordinates.

The category of unital or weakly unital A∞-algebras are defined in the
natural way by the requirement that morphisms preserve the unit (or weak
unit) structure.

In this section we are going to discuss a non-commutative dg-version of
the odd one-dimensional supervector space A0|1 and its relationship to weakly
unital A∞-algebras. The results are valid for both Z-graded and Z/2-graded
A∞-algebras.

Definition 4.2 Non-commutative formal dg-line L is a non-commutative for-
mal pointed dg-manifold corresponding to the one-dimensional A∞-algebra
A " k such that m2 = id,mn�=2 = 0.

The algebra of functions O(L) is isomorphic to the topological algebra of
formal series k〈〈ξ〉〉, where deg ξ = 1. The differential is given by ∂(ξ) = ξ2.

4.2 Adding a Weak Unit

Let (X, dX , x0) be a non-commutative formal pointed dg-manifold correspod-
ning to a non-unital A∞-algebra A. We would like to describe geometrically
the procedure of adding a weak unit to A.

Let us consider the non-commutative formal pointed graded manifold
X1 = L × X corresponding to the free product of the coalgebras BL ∗ BX .
Clearly one can lift vector fields dX and dL := ∂/∂ ξ to X1.

Lemma 4.3 The vector field

d := dX1 = dX + ad(ξ) − ξ2∂/∂ ξ

satisfies the condition [d, d] = 0.

Proof. Straightforward check. �
It follows from the formulas given in the proof that ξ appears in the ex-

pansion of dX in quadratic expressions only. Let A1 be an A∞-algebras cor-
responding to X1 and 1 ∈ TptX1 = A1[1] be the element of A1[1] dual to ξ

(it corresponds to the tangent vector ∂/∂ ξ). Thus we see that mA1
2 (1, a) =

mA1
2 (a, 1) = a,mA1

2 (1, 1) = 1 for any a ∈ A and mA1
n (a1, ..., 1, ..., an) = 0 for

all n ≥ 2, a1, ..., an ∈ A. This proves the following result.

Proposition 4.4 The A∞-algebra A1 has a strict unit.
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Notice that we have a canonical morphism of non-commutative formal
pointed dg-manifolds e : X → X1 such that e∗|X = id, e∗(ξ) = 0.

Definition 4.5 Weak unit in X is given by a morphism of non-commutative
formal pointed dg-manifolds p : X1 → X such that p ◦ e = id.

It follows from the definition that if X has a weak unit then the associative
algebra H•(A,mA

1 ) is unital. Hence our geometric definition agrees with the
pure algebraic one (explicit algebraic description of the notion of weak unit
can be found, e.g., in [15], Sect. 207).

5 Modules and Bimodules

5.1 Modules and Vector Bundles

Recall that a topological vector space is called linearly compact if it is a projec-
tive limit of finite-dimensional vector spaces. The duality functor V 
→ V ∗ es-
tablishes an anti-equivalence between the category of vector spaces (equipped
with the discrete topology) and the category of linearly compact vector spaces.
All that can be extended in the obvious way to the category of graded vector
spaces.

Let X be a non-commutative thin scheme in V ectZk .

Definition 5.1 Linearly compact vector bundle E over X is given by a lin-
early compact topologically free O(X)-module Γ (E), where O(X) is the al-
gebra of function on X. Module Γ (E) is called the module of sections of the
linearly compact vector bundle E .

Suppose that (X,x0) is formal graded manifold. The fiber of E over x0 is
given by the quotient space Ex0 = Γ (E)/mx0Γ (E) where mx0 ⊂ O(X) is the
two-sided maximal ideal of functions vanishing at x0 and the bar means the
closure.

Definition 5.2 A dg-vector bundle over a formal pointed dg-manifold (X, dX ,
x0) is given by a linearly compact vector bundle E over (X,x0) such that the
corresponding module Γ (E) carries a differential dE : Γ (E) → Γ (E)[1], d2

E = 0
so that (Γ (E), dE) becomes a dg-module over the dg-algebra (O(X), dX) and
dE vanishes on Ex0 .

Definition 5.3 Let A be a non-unital A∞-algebra. A left A-module M is
given by a dg-bundle E over the formal pointed dg-manifold X = Spc(T (A[1]))
together with an isomorphism of vector bundles Γ (E) " O(X)⊗̂M∗ called a
trivialization of E .

7 V. Lyubashenko has informed us that the equivalence of two descriptions also
follows from his results with Yu. Bespalov and O. Manzyuk.
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Passing to dual spaces we obtain the following algebraic definition.

Definition 5.4 Let A be an A∞-algebra and M be a Z-graded vector space.
A structure of a left A∞-module on M over A (or simply a structure of a left
A-module on M) is given by a differential dM of degree +1 on T (A[1]) ⊗ M
which makes it into a dg-comodule over the dg-coalgebra T (A[1]).

The notion of right A∞-module is similar. Right A-module is the same
as left Aop-module. Here Aop is the opposite A∞-algebra, which coincides
with A as a Z-graded vector space and for the higher multiplications one
has: mop

n (a1, ..., an) = (−1)n(n−1)/2mn(an, ..., a1). The A∞-algebra A carries
the natural structures of the left and right A-modules. If we simply say “A-
module” it will always mean “left A-module.”

Taking the Taylor series of dM we obtain a collection of k-linear maps
(higher action morphisms) for any n ≥ 1

mM
n : A⊗(n−1) ⊗M → M [2 − n],

satisfying the compatibility conditions which can be written in exactly the
same form as compatibility conditions for the higher products mA

n (see e.g.,
[27]). All those conditions can be derived from just one property that the
cofree T+(A[1])-comodule T+(A[1],M) = ⊕n≥0A[1]⊗n⊗M carries a derivation
mM = (mM

n )n≥0 such that [mM ,mM ] = 0. In particular (M,mM
1 ) is a complex

of vector spaces.

Definition 5.5 Let A be a weakly unital A∞-algebra. An A-module M is
called weakly unital if the cohomology H•(M,mM

1 ) is a unital H•(A)-module.

It is easy to see that left A∞-modules over A form a dg-category A−mod
with morphisms being homomorphisms of the corresponding comodules. As a
graded vector space

HomA−mod(M,N) = ⊕n≥0HomV ectZk
(A[1]⊗n ⊗M,N).

It easy to see that HomA−mod(M,N) is a complex.
If M is a right A-module and N is a left A-module then one has a naturally

defined structure of a complex on M ⊗A N := ⊕n≥0M ⊗ A[1]⊗n ⊗ N . The
differential is given by the formula:

d(x⊗ a1 ⊗ ...⊗ an ⊗ y) =
∑

±mM
i (x⊗ a1 ⊗ ...⊗ ai) ⊗ ai+1 ⊗ ...⊗ an ⊗ y)

+
∑

±x⊗ a1 ⊗ ...⊗ ai−1 ⊗mA
k (ai ⊗ ...⊗ ai+k−1) ⊗ ai+k ⊗ ...⊗ an ⊗ y

+
∑

±x⊗ a1 ⊗ ...⊗ ai−1 ⊗mN
j (ai ⊗ ...⊗ an ⊗ y).

We call this complex the derived tensor product of M and N .
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For any A∞-algebras A and B we define an A−B-bimodule as a Z-graded
vector space M together with linear maps

cM
n1,n2

: A[1]⊗n1 ⊗M ⊗B[1]⊗n2 → M [1]

satisfying the natural compatibility conditions (see e.g. [27]). If X and Y are
formal pointed dg-manifolds corresponding to A and B respectively then an
A − B-bimodule is the same as a dg-bundle E over X ⊗ Y equipped with a
homological vector field dE which is a lift of the vector field dX ⊗ 1 + 1 ⊗ dY .

Example 5.6 Let A = B = M . We define a structure of diagonal bimodule on
A by setting cA

n1,n2
= mA

n1+n2+1.

Proposition 5.7 (1) To have a structure of an A∞-module on the complex
M is the same as to have a homomorphism of A∞-algebras φ : A → EndK(M),
where K is a category of complexes of k-vector spaces.

(2) To have a structure of an A − B-bimodule on a graded vector space
M is the same as to have a structure of left A-module on M and to have a
morphism of A∞-algebras ϕA,B : Bop → HomA−mod(M,M).

Let A be an A∞-algebra, M be an A-module and ϕA,A : Aop → HomA−mod

(M, M) be the corresponding morphism of A∞-algebras. Then the dg-algebra
Centr(ϕ) is isomorphic to the dg-algebra HomA−mod(M,M).

If M =A MB is an A − B-bimodule and N =B NC is a B − C-bimodule
then the complex AMB ⊗B BNC carries an A − C-bimodule structure. It is
called the tensor product of M and N .

Let f : X → Y be a homomorphism of formal pointed dg-manifolds corre-
sponding to a homomorphism of A∞-algebras A → B. Recall that in Sect. 4
we constructed the formal neighborhood Uf of f in Maps(X,Y ) and the A∞-
algebra Centr(f). On the other hand, we have an A − mod − B bimodule
structure on B induced by f . Let us denote this bimodule by M(f). We leave
the proof of the following result as an exercise to the reader. It will not be
used in the paper.

Proposition 5.8 If B is weakly unital then the dg-algebra EndA−mod−B

(M(f)) is quasi-isomorphic to Centr(f).

A∞-bimodules will be used in Part II for study of homologically smooth
A∞-algebras. In the subsequent paper devoted to A∞-categories we will
explain that bimodules give rise to A∞-functors between the corresponding
categories of modules. Tensor product of bimodules corresponds to the com-
position of A∞-functors.

5.2 On the Tensor Product of A∞-Algebras

The tensor product of two dg-algebras A1 and A2 is a dg-algebra. For A∞-
algebras there is no canonical simple formula for the A∞-structure on A1⊗kA2
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which generalizes the one in the dg-algebras case. Some complicated formulas
were proposed in [44]. They are not symmetric with respect to the permutation
(A1, A2) 
→ (A2, A1). We will give below the definition of the dg-algebra which
is quasi-isomorphic to the one from [44] in the case when both A1 and A2 are
weakly unital. Namely, we define the A∞-tensor product

A1“ ⊗′′ A2 = EndA1−mod−A2(A1 ⊗A2).

Note that it is a unital dg-algebra. One can show that the dg-category A −
mod−B is equivalent (as a dg-category) to A1“ ⊗′′ Aop

2 −mod.

6 Yoneda Lemma

6.1 Explicit Formulas for the Product and Differential
on Centr(f)

Let A be an A∞-algebra and B = EndK(A) be the dg-algebra of endo-
morphisms of A in the category K of complexes of k-vector spaces. Let
f = fA : A → B be the natural A∞-morphism coming from the left ac-
tion of A on itself. Notice that B is always a unital dg-algebra, while A can be
non-unital. The aim of this Section was to discuss the relationship between A
and Centr(fA). This is a simplest case of the A∞-version of Yoneda lemma
(the general case easily follows from this one. See also [39, 40]).

As a graded vector space Centr(fA) is isomorphic to
∏

n≥0 Hom(A⊗(n+1),
A)[−n].

Let us describe the product in Centr(f) for f = fA. Let φ, ψ be two
homogeneous elements of Centr(f). Then

(φ · ψ)(a1, a2, . . . , aN ) = ±φ(a1, . . . , ap−1, ψ(ap, . . . , aN )).

Here ψ acts on the last group of variables ap, . . . , aN and we use the Koszul
sign convention for A∞-algebras in order to determine the sign.

Similarly one has the following formula for the differential (see Sect. 3.3):

(dφ)(a1, . . . , aN ) =
∑

±φ(a1, . . . , as,mi(as+1, . . . , as+i), as+i+1 . . . , aN )

+
∑

±mi(a1, . . . , as−1, φ(as, . . . , aj , ..., aN )).

6.2 Yoneda Homomorphism

If M is an A − B-bimodule then one has a homomorphism of A∞-algebras
Bop → Centr(φA,M ) (see Propositions 5.1.7 and 5.1.8). We would like to apply
this general observation in the case of the diagonal bimodule structure on A.
Explicitly, we have the A∞-morphism Aop → Endmod−A(A) or, equivalently,
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the collection of maps A⊗m → Hom(A⊗n, A). By conjugation it gives us a
collection of maps

A⊗m ⊗Hom(A⊗n, A) → Hom(A⊗(m+n), A).

In this way we get a natural A∞-morphism Y o : Aop → Centr(fA) called the
Yoneda homomorphism.

Proposition 6.1 The A∞-algebra A is weakly unital if and only if the
Yoneda homomorphism is a quasi-isomorphism.

Proof. Since Centr(fA) is weakly unital, then A must be weakly unital as
long as Yoneda morphism is a quasi-isomorphism.

Let us prove the opposite statement. We assume that A is weakly unital.
It suffices to prove that the cone Cone(Y o) of the Yoneda homomorphism has
trivial cohomology. Thus we need to prove that the cone of the morphism of
complexes

(Aop,m1) → (⊕n≥1Hom(A⊗n, A),mCentr(fA)
1 ).

is contractible. In order to see this, one considers the extended complex A⊕
Centr(fA). It has natural filtration arising from the tensor powers of A. The
corresponding spectral sequence collapses, which gives an explicit homotopy
of the extended complex to the trivial one. This implies the desired quasi-
isomorphism of H0(Aop) and H0(Centr(fA)). �

Remark 6.2 It look like the construction of Centr(fA) is the first known
canonical construction of a unital dg-algebra quasi-isomorphic to a given A∞-
algebra (canonical but not functorial). This is true even in the case of strictly
unital A∞-algebras. Standard construction via bar and cobar resolutions gives
a non-unital dg-algebra.

Part II: Smoothness and Compactness

7 Hochschild Cochain and Chain Complexes
of an A∞-Algebra

7.1 Hochschild Cochain Complex

We change the notation for the homological vector field to Q, since the let-
ter d will be used for the differential.8 Let ((X, pt), Q) be a non-commutative

8 We recall that the super version of the notion of formal dg-manifold was intro-
duced by A. Schwarz under the name “Q-manifold.” Here letter Q refers to the
supercharge notation from Quantum Field Theory.
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formal pointed dg-manifold corresponding to a non-unital A∞-algebra A and
V ect(X) the graded Lie algebra of vector fields on X (i.e., continuous deriva-
tions of O(X)).

We denote by C•(A,A) := C•(X,X) := V ect(X)[−1] the Hochschild
cochain complex of A. As a Z-graded vector space

C•(A,A) =
∏

n≥0

HomC(A[1]⊗n, A).

The differential on C•(A,A) is given by [Q, •]. Algebraically, C•(A,A)[1] is a
DGLA of derivations of the coalgebra T (A[1]) (see Sect. 3).

Theorem 7.1 Let X be a non-commutative formal pointed dg-manifold and
C•(X,X) be the Hochschild cochain complex. Then one has the following
quasi-isomorphism of complexes

C•(X,X)[1] " TidX
(Maps(X,X)),

where TidX
denotes the tangent complex at the identity map.

Proof. Notice that Maps(Spec(k[ε]/(ε2)) ⊗X,X) is the non-commutative dg
ind-manifold of vector fields on X. The tangent space TidX

from the theorem
can be identified with the set of such f ∈ Maps(Spec(k[ε]/(ε2))⊗X,X) that
f |{pt}⊗X = idX . On the other hand the DGLA C•(X,X)[1] is the DGLA of
vector fields on X. The theorem follows. �

The Hochschild complex admits a couple of other interpretations. We leave
to the reader to check the equivalence of all of them. First, C•(A,A) "
Centr(idA). Finally, for a weakly unital A one has C•(A,A) " HomA−mod−A

(A,A). Both are quasi-isomorphisms of complexes.

Remark 7.2 Interpretation of C•(A,A)[1] as vector fields gives a DGLA struc-
ture on this space. It is a Lie algebra of the “commutative” formal group in
V ectZk , which is an abelianization of the non-commutative formal group of in-
ner (in the sense of tensor categories) automorphisms Aut(X) ⊂ Maps(X,X).
Because of this non-commutative structure underlying the Hochschild cochain
complex, it is natural to expect that C•(A,A)[1] carries more structures than
just DGLA. Indeed, Deligne’s conjecture (see e.g., [35] and the last section
of this paper) claims that the DGLA algebra structure on C•(A,A)[1] can
be extended to a structure of an algebra over the operad of singular chains
of the topological operad of little discs. Graded Lie algebra structure can be
recovered from cells of highest dimension in the cell decomposition of the
topological operad.

7.2 Hochschild Chain Complex

In this subsection we are going to construct a complex of k-vector spaces
which is dual to the Hochschild chain complex of a non-unital A∞-algebra.
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Cyclic Differential Forms of Order Zero

Let (X, pt) be a non-commutative formal pointed manifold over k and O(X)
the algebra of functions on X. For simplicity we will assume that X is finite-
dimensional, i.e., dimk TptX < ∞. If B = BX is a counital coalgebra corre-
sponding to X (coalgebra of distributions on X) then O(X) " B∗. Let us
choose affine coordinates x1, x2, ..., xn at the marked point pt. Then we have
an isomorphism of O(X) with the topological algebra k〈〈x1, ..., xn〉〉 of formal
series in free graded variables x1, ..., xn.

We define the space of cyclic differential degree zero forms on X as

Ω0
cycl(X) = O(X)/[O(X),O(X)]top,

where [O(X),O(X)]top denotes the topological commutator (the closure of the
algebraic commutator in the adic topology of the space of non-commutative
formal power series).

Equivalently, we can start with the graded k-vector space Ω0
cycl,dual(X)

defined as the kernel of the composition B → B⊗B →
∧2

B (first map is the
coproduct Δ : B → B ⊗ B, while the second one is the natural projection to
the skew-symmetric tensors). Then Ω0

cycl(X) " (Ω0
cycl,dual(X))∗ (dual vector

space).

Higher Order Cyclic Differential Forms

We start with the definition of the odd tangent bundle T [1]X. This is the dg-
analog of the total space of the tangent supervector bundle with the changed
parity of fibers. It is more convenient to describe this formal manifold in
terms of algebras rather than coalgebras. Namely, the algebra of functions
O(T [1]X) is a unital topological algebra isomorphic to the algebra of for-
mal power series k〈〈xi, dxi〉〉, 1 ≤ i ≤ n, where deg dxi = deg xi + 1 (we
do not impose any commutativity relations between generators). More in-
variant description involves the odd line. Namely, let t1 := Spc(B1), where
(B1)∗ = k〈〈ξ〉〉/(ξ2), deg ξ = +1. Then we define T [1]X as the formal neigh-
borhood in Maps(t1,X) of the point p which is the composition of pt with
the trivial map of t1 into the point Spc(k).

Definition 7.3 (a) The graded vector space

O(T [1]X) = Ω•(X) =
∏

m≥0

Ωm(X)

is called the space of de Rham differential forms on X.
(b) The graded space

Ω0
cycl(T [1]X) =

∏

m≥0

Ωm
cycl(X)

is called the space of cyclic differential forms on X.
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In coordinate description the grading is given by the total number of dxi.
Clearly each space Ωn

cycl(X), n ≥ 0 is dual to some vector space Ωn
cycl,dual(X)

equipped with the discrete topology (since this is true for Ω0(T [1]X)).
The de Rham differential on Ω•(X) corresponds to the vector field ∂/∂ξ

(see description which uses the odd line, it is the same variable ξ). Since Ω0
cycl

is given by the natural (functorial) construction, the de Rham differential
descends to the subspace of cyclic differential forms. We will denote the former
by dDR and the latter by dcycl.

The space of cyclic 1-forms Ω1
cycl(X) is a (topological) span of expressions

x1x2...xl dxj , xi ∈ O(X). Equivalently, the space of cyclic 1-forms consists of
expressions

∑
1≤i≤n fi(x1, ..., xn) dxi where fi ∈ k〈〈x1, ..., xn〉〉.

There is a map ϕ : Ω1
cycl(X) → O(X)red := O(X)/k, which is defined on

Ω1(X) by the formula adb 
→ [a, b] (check that the induced map on the cyclic
1-forms is well-defined). This map does not have an analog in the commutative
case.9

Non-commutative Cartan Calculus

Let X be a formal graded manifold over a field k. We denote by g := gX

the graded Lie algebra of continuous linear maps O(T [1]X) → O(T [1]X)
generated by de Rham differential d = ddR and contraction maps iξ, ξ ∈
V ect(X) which are defined by the formulas iξ(f) = 0, iξ(df) = ξ(f) for all f ∈
O(T [1]X). Let us define the Lie derivative Lieξ = [d, iξ] (graded commutator).
Then one can easily checks the usual formulas of the Cartan calculus

[d, d] = 0, Lieξ = [d, iξ], [d, Lieξ] = 0,

[Lieξ, iη] = i[ξ,η], [Lieξ, Lieη] = Lie[ξ,η], [iξ, iη] = 0,

for any ξ, η ∈ V ect(X).
By naturality, the graded Lie algebra gX acts on the space Ω•

cycl(X) as
well as one the dual space (Ω•

cycl(X))∗.

Differential on the Hochschild Chain Complex

Let Q be a homological vector field on (X, pt). Then A = TptX[−1] is a
non-unital A∞-algebra.

We define the dual Hochschild chain complex (C•(A,A))∗ as Ω1
cycl(X)[2]

with the differential LieQ. Our terminology is explained by the observation
that Ω1

cycl(X)[2] is dual to the conventional Hochschild chain complex

9 V. Ginzburg pointed out that the geometric meaning of the map ϕ as a “contrac-
tion with double derivation” was suggested in Sect. 5.4 of [19].
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C•(A,A) = ⊕n≥0(A[1])⊗n ⊗A.

Note that we use the cohomological grading on C•(A,A), i.e. chains of degree
n in conventional (homological) grading have degree −n in our grading. The
differential has degree +1.

In coordinates the isomorphism identifies an element fi(x1, ..., xn) ⊗ xi ∈
(A[1]⊗n ⊗ A)∗ with the homogeneous element fi(x1, ..., xn) dxi ∈ Ω1

cycl(X).
Here xi ∈ (A[1])∗, 1 ≤ i ≤ n are affine coordinates.

The graded Lie algebra V ect(X) of vector fields of all degrees acts on any
functorially defined space, in particular, on all spaces Ωj(X), Ωj

cycl(X), etc.
Then we have a differential on Ωj

cycl(X) given by b = LieQ of degree +1.
There is an explicit formula for the differential b on C•(A,A) (cf. [T]):

b(a0 ⊗ ...⊗ an) =
∑

±a0 ⊗ ...⊗ml(ai ⊗ ...⊗ aj) ⊗ ...⊗ an

+
∑

±ml(aj ⊗ ...⊗ an ⊗ a0 ⊗ ...⊗ ai) ⊗ ai+1 ⊗ ...⊗ aj−1.

It is convenient to depict a cyclic monomial a0 ⊗ ...⊗ an in the following way.
We draw a clockwise oriented circle with n+1 points labeled from 0 to n such
that one point is marked We assign the elements a0, a1, ..., an to the points
with the corresponding labels, putting a0 at the marked point.

a0

a1

ai

an

Then we can write b = b1 +b2 where b1 is the sum (with appropriate signs)
of the expressions depicted below:
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mlid

.

.
Similarly, b2 is the sum (with appropriate signs) of the expressions depicted

below:

mlid

.

.
In both cases maps ml are applied to a consequitive cyclically ordered

sequence of elements of A assigned to the points on the top circle. The identity
map is applied to the remaining elements. Marked point on the top circle is
the position of the element of a0. Marked point on the bottom circle depicts
the first tensor factor of the corresponding summand of b. In both the cases
we start cyclic count of tensor factors clockwise from the marked point.



Notes on A∞-Algebras, A∞-Categories and Non-Commutative Geometry 181

7.3 The Case of Strictly Unital A∞-Algebras

Let A be a strictly unital A∞-algebra. There is a reduced Hochschild chain
complex

Cred
• (A,A) = ⊕n≥0A⊗ ((A/k · 1)[1])⊗n,

which is the quotient of C•(A,A). Similarly there is a reduced Hochschild
cochain complex

C•
red(A,A) =

∏

n≥0

HomC((A/k · 1)[1]⊗n, A),

which is a subcomplex of the Hochschild cochain complex C•(A,A).
Also, C•(A,A) carries also the “Connes’s differential” B of degree −1

(called sometimes “de Rham differential”) given by the formula (see [7], [T])

B(a0 ⊗ ...⊗ an) =
∑

i

±1⊗ ai ⊗ ...⊗ an ⊗ a0 ⊗ ...⊗ ai−1, B
2 = 0, Bb+ bB = 0.

Here is a graphical description of B (it will receive an explanation in the
section devoted to generalized Deligne’s conjecture)

id id 1 id

.

.

.

ai
an

Let u be an independent variable of degree +2. It follows that for a strictly
unital A∞-algebra A one has a differential b+uB of degree +1 on the graded
vector space C•(A,A)[[u]] which makes the latter into a complex called neg-
ative cyclic complex (see [7, T]). In fact b + uB is a differential on a smaller
complex C•(A,A)[u]. In the non-unital case one can use Cuntz–Quillen com-
plex instead of a negative cyclic complex (see next subsection).
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7.4 Non-unital Case: Cuntz–Quillen Complex

In this subsection we are going to present a formal dg-version of the mixed
complex introduced by Cuntz and Quillen [9]. In the previous subsection we
introduced the Connes differential B in the case of strictly unital A∞-algebras.
In the non-unital case the construction has to be modified. Let X = A[1]form

be the corresponding non-commutative formal pointed dg-manifold. The al-
gebra of functions O(X) "

∏
n≥0(A[1]⊗n)∗ is a complex with the differential

LieQ.

Proposition 7.4 If A is weakly unital then all non-zero cohomology of the
complex O(X) are trivial and H0(O(X)) " k.

Proof. Let us calculate the cohomology using the spectral sequence associated
with the filtration

∏
n≥n0

(A[1]⊗n)∗. The term E1 of the spectral sequence
is isomorphic to the complex

∏
n≥0((H

•(A[1],m1))⊗n)∗ with the differential
induced by the multiplication mA

2 on H•(A,mA
1 ). By assumption H•(A,mA

1 )
is a unital algebra, hence all the cohomology groups vanish except of the
zeroth one, which is isomorphic to k. This concludes the proof. �.

It follows from the above Proposition that the complex O(X)/k is acyclic.
We have the following two morphisms of complexes

dcycl : (O(X)/k · 1, LieQ) → (Ω1
cycl(X), LieQ)

and
ϕ : (Ω1

cycl(X), LieQ) → (O(X)/k · 1, LieQ).

Here dcycl and ϕ were introduced in the Sect. 7.2. We have: deg(dcycl) = +1,
deg(ϕ) = −1, dcycl ◦ ϕ = 0, ϕ ◦ dcycl = 0..

Let us consider a modified Hochschild chain complex

Cmod
• (A,A) := (Ω1

cycl(X)[2])∗ ⊕ (O(X)/k · 1)∗

with the differential

b =
(

(LieQ)∗ ϕ∗

0 (LieQ)∗

)

Let

B =
(

0 0
d∗cycl 0

)

be an endomorphism of Cmod
• (A,A) of degree −1. Then

B2 = 0. Let u be a formal variable of degree +2. We define modified negative
cyclic, periodic cyclic and cyclic chain complexes such as follows

CC−,mod
• (A) = (Cmod

• (A,A)[[u]], b + uB),

CPmod
• (A) = (Cmod

• (A,A)((u)), b + uB),

CCmod
• (A) = (CPmod

• (A)/CC−,mod
• (A))[−2].
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For unital dg-algebras these complexes are quasi-isomorphic to the stan-
dard ones. If char k = 0 and A is weakly unital then CC−,mod

• (A) is quasi-
isomorphic to the complex (Ω0

cycl(X), LieQ)∗. Note that the k[[u]]-module
structure on the cohomology H•((Ω0

cycl(X), LieQ)∗) is not visible from the
definition.

8 Homologically Smooth and Compact A∞-Algebras

From now on we will assume that all A∞-algebras are weakly unital unless
we say otherwise.

8.1 Homological Smoothness

Let A be an A∞-algebra over k and E1, E2, ..., En be a sequence of A-modules.
Let us consider a sequence (E≤i)1≤i≤n of A-modules together with exact tri-
angles

Ei → E≤i → Ei+1 → Ei[1],

such that E≤1 = E1.
We will call E≤n an extension of the sequence E1, ..., En.
The reader also notices that the above definition can be given also for the

category of A−A-bimodules.

Definition 8.1 (1) A perfect A-module is the one which is quasi-isomorphic
to a direct summand of an extension of a sequence of modules each of which
is quasi-isomorphic to A[n], n ∈ Z.

(2) A perfect A − A-bimodule is the one which is quasi-isomorphic to a
direct summand of an extension of a sequence consisting of bimodules each of
which is quasi-isomorphic to (A⊗A)[n], n ∈ Z.

Perfect A-modules form a full subcategory PerfA of the dg-category A−
mod. Perfect A − A-bimodules form a full subcategory PerfA−mod−A of the
category of A−A-bimodules.10

Definition 8.2 We say that an A∞-algebra A is homologically smooth if it
is a perfect A − A-bimodule (equivalently, A is a perfect module over the
A∞-algebra A “⊗” Aop).

Remark 8.3 An A − B-bimodule M gives rise to a dg-functor B − mod →
A − mod such that V 
→ M ⊗B V . The diagonal bimodule A corresponds to
the identity functor IdA−mod : A−mod → A−mod. The notion of homolog-
ical smoothness can be generalized to the framework of A∞-categories. The
corresponding notion of saturated A∞-category can be spelled out entirely in
terms of the identity functor.
10 Sometimes PerfA is called a thick triangulated subcategory of A−mod generated

by A. Then it is denoted by 〈A〉. In the case of A − A-bimodules we have a thik
triangulated subcategory generated by A ⊗ A, which is denoted by 〈A ⊗ A〉.
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Let us list few examples of homologically smooth A∞-algebras.

Example 8.4 (a) Algebra of functions on a smooth affine scheme.
(b) A = k[x1, ..., xn]q, which is the algebra of polynomials in variables

xi, 1 ≤ i ≤ n subject to the relations xixj = qij xjxi, where qij ∈ k∗ satisfy the
properties qii = 1, qijqji = 1. More generally, all quadratic Koszul algebras,
which are deformations of polynomial algebras are homologically smooth.

(c) Algebras of regular functions on quantum groups (see [37]).
(d) Free algebras k〈x1, ..., xn〉.
(e) Finite-dimensional associative algebras of finite homological dimension.
(f) If X is a smooth scheme over k then the bounded derived cate-

gory Db(Perf(X)) of the category of perfect complexes (it is equivalent to
Db(Coh(X))) has a generator P (see [5]). Then the dg-algebra A = End(P )
(here we understand endomorphisms in the “derived sense”, see [28]) is a
homologically smooth algebra.

Let us introduce an A − A-bimodule A! = HomA−mod−A(A,A ⊗ A) (cf.
[18]). The structure of an A − A-bimodule is defined similarly to the case of
associative algebras.

Proposition 8.5 If A is homologically smooth then A! is a perfect A − A-
bimodule.

Proof. We observe that HomC−mod(C,C) is a dg-algebra for any A∞-
algebra C. The Yoneda embedding C → HomC−mod(C,C) is a quasi-
isomorphism of A∞-algebras. Let us apply this observation to C = A⊗ Aop.
Then using the A∞-algebra A“ ⊗′′ Aop (see Sect. 5.2) we obtain a quasi-
isomorphism of A − A-bimodules HomA−mod−A(A ⊗ A,A ⊗ A) " A ⊗ A.
By assumption A is quasi-isomorphic (as an A∞-bimodule) to a direct
summand in an extension of a sequence (A ⊗ A)[ni] for ni ∈ Z. Hence
HomA−mod−A(A ⊗ A,A ⊗ A) is quasi-isomorphic to a direct summand in
an extension of a sequence (A⊗A)[mi] for mi ∈ Z. The result follows. �

Definition 8.6 The bimodule A! is called the inverse dualizing bimodule.

The terminology is explained by an observation that if A = End(P ) where
P is a generator of of Perf(X) (see example 8f)) then the bimodule A! cor-
responds to the functor F 
→ F ⊗ K−1

X [−dimX], where KX is the canonical
class of X.11

Remark 8.7 In [50] the authors introduced a stronger notion of fibrant dg-
algebra. Informally it corresponds to “non-commutative homologically smooth
affine schemes of finite type.” In the compact case (see the next section) both
notions are equivalent.
11 We thank Amnon Yekutieli for pointing out that the inverse dualizing module

was first mentioned in the paper by M. van den Bergh “Existence theorems for
dualizing complexes over non-commutative graded and filtered rings,” J. Algebra,
195:2, 1997, 662–679.
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8.2 Compact A∞-Algebras

Definition 8.8 We say that an A∞-algebra A is compact if the cohomology
H•(A,m1) is finite-dimensional.

Example 8.9 (a) If dimkA < ∞ then A is compact.
(b) Let X/k be a proper scheme of finite type. According to [5] there exists

a compact dg-algebra A such that PerfA is equivalent to Db(Coh(X)).
(c) If Y ⊂ X is a proper subscheme (possibly singular) of a smooth scheme

X then the bounded derived category Db
Y (Perf(X)) of the category of perfect

complexes on X, which are supported on Y has a generator P such that
A = End(P ) is compact. In general it is not homologically smooth for Y �= X.
More generally, one can replace X by a formal smooth scheme containing Y ,
e.g., by the formal neighborhood of Y in the ambient smooth scheme. In
particular, for Y = {pt} ⊂ X = A1 and the generator OY of Db(Perf(X))
the corresponding graded algebra is isomorphic to k〈ξ〉/(ξ2), where deg ξ = 1.

Proposition 8.10 If A is compact and homologically smooth then the Hoch-
schild homology and cohomology of A are finite-dimensional.

Proof. (a) Let us start with Hochschild cohomology. We have an isomor-
phism of complexes C•(A,A) " HomA−mod−A(A,A). Since A is homologi-
cally smooth the latter complex is quasi-isomorphic to a direct summand of an
extension of the bimodule HomA−mod−A(A⊗A,A⊗A). The latter complex
is quasi-isomorphic to A⊗A (see the proof of the Proposition 8.1.5). Since A
is compact, the complex A⊗A has finite-dimensional cohomology. Therefore
any perfect A−A-bimodule enjoys the same property. We conclude that the
Hochschild cohomology groups are finite-dimensional vector spaces.

(b) Let us consider the case of Hochschild homology. With any A − A-
bimodule E we associate a complex of vector spaces E� = ⊕n≥0A[1]⊗n⊗E (cf.
[18]). The differential on E� is given by the same formulas as the Hochschild
differential for C•(A,A) with the only change: we place an element e ∈ E
instead of an element of A at the marked vertex (see Sect. 7). Taking E = A
with the structure of the diagonal A−A-bimodule we obtain A� = C•(A,A).
On the other hand, it is easy to see that the complex (A ⊗ A)� is quasi-
isomorphic to (A,m1), since (A ⊗ A)� is the quotient of the canonical free
resolution (bar resolution) for A by a subcomplex A. The construction of E�

is functorial, hence A� is quasi-isomorphic to a direct summand of an extension
(in the category of complexes) of a shift of (A⊗A)�, because A is smooth. Since
A� = C•(A,A) we see that the Hochschild homology H•(A,A) is isomorphic
to a direct summand of the cohomology of an extension of a sequence of k-
modules (A[ni],m1). Since the vector space H•(A,m1) is finite-dimensional
the result follows. �

Remark 8.11 For a homologically smooth compact A∞-algebra A one has a
quasi-isomorphism of complexes C•(A,A) " HomA−mod−A(A!, A) Also, the
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complex HomA−mod−A(M !, N) is quasi-isomorphic to (M ⊗A N)� for two
A − A-bimodules M,N , such that M is perfect. Here M ! := HomA−mod−A

(M,A ⊗ A) Having this in mind one can offer a version of the above proof
which uses the isomorphism

HomA−mod−A(A!, A) " HomA−mod−A(HomA−mod−A(A,A⊗A), A).

Indeed, since A is homologically smooth the bimodule HomA−mod−A(A,A⊗
A) is quasi-isomorphic to a direct summand P of an extension of a shift of
HomA−mod−A(A⊗A,A⊗A) " A⊗A. Similarly, HomA−mod−A(P,A) is quasi-
isomorphic to a direct summand of an extension of a shift of HomA−mod−A(A⊗
A,A⊗A) " A⊗A. Combining the above computations we see that the com-
plex C•(A,A) is quasi-isomorphic to a direct summand of an extension of a
shift of the complex A ⊗ A. The latter has finite-dimensional cohomology,
since A enjoys this property.

Besides algebras of finite quivers there are two main sources of homologi-
cally smooth compact Z-graded A∞-algebras.

Example 8.12 (a) Combining Examples 8.1.4(f) and 8.2.2(b) we see that the
derived category Db(Coh(X)) is equivalent to the category PerfA for a ho-
mologically smooth compact A∞-algebra A.

(b) According to [45] the derived category Db(F (X)) of the Fukaya cat-
egory of a K3 surface X is equivalent to PerfA for a homologically smooth
compact A∞-algebra A. The latter is generated by Lagrangian spheres, which
are vanishing cycles at the critical points for a fibration of X over CP1. This
result can be generalized to other Calabi–Yau manifolds.

In Z/2-graded case examples of homologically smooth compact A∞-algebras
come from Landau–Ginzburg categories (see [42, 43]) and from Fukaya cate-
gories for Fano varieties.

Remark 8.13 Formal deformation theory of smooth compact A∞-algebras
gives a finite-dimensional formal pointed (commutative) dg-manifold. The
global moduli stack can be constructed using methods of [50]). It can be
thought of as a moduli stack of non-commutative smooth proper varieties.

9 Degeneration Hodge-to-de Rham

9.1 Main Conjecture

Let us assume that char k = 0 and A is a weakly unital A∞-algebra, which
can be Z-graded or Z/2-graded.

For any n ≥ 0 we define the truncated modified negative cyclic complex
C

mod,(n)
• (A,A) = (Cmod

• (A,A) ⊗ k[u]/(un), b + uB), where deg u = +2. Its
cohomology will be denoted by H•(Cmod,(n)

• (A,A)).
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Definition 9.1 We say that an A∞-algebra A satisfies the degeneration prop-
erty if for any n ≥ 1 one has: H•(Cmod,(n)

• (A,A)) is a flat k[u]/(un)-module.

Conjecture 9.2 (Degeneration Hodge-to-de Rham). Let A be a weakly uni-
tal compact homologically smooth A∞-algebra. Then it satisfies the degener-
ation property.

We will call the above statement the degeneration conjecture.

Corollary 9.3 If the A satisfies the degeneration property then the negative
cyclic homology coincides with lim←−n

H•(Cmod,(n)
• (A,A)) and it is a flat k[[u]]-

module.

Remark 9.4 One can speak about degeneration property (modulo un) for A∞-
algebras which are flat over unital commutative k-algebras. For example, let
R be an Artinian local k-algebra with the maximal ideal m and A be a flat R-
algebra such that A/m is weakly unital, homologically smooth and compact.
Then, assuming the degeneration property for A/m, one can easily see that
it holds for A as well. In particular, the Hochschild homology of A gives rise
to a vector bundle over Spec(R) × A1

form[−2].

Assuming the degeneration property for A we see that there is a Z-graded
vector bundle ξA over A1

form[−2] = Spf(k[[u]]) with the space of sections
isomorphic to

lim←−
n

H•(Cmod,(n)
• (A,A)) = HC−,mod

• (A),

which is the negative cyclic homology of A. The fiber of ξA at u = 0 is
isomorphic to the Hochschild homology Hmod

• (A,A) := H•(C•(A,A)).
Note that Z-graded k((u))-module HPmod

• (A) of periodic cyclic homology
can be described in terms of just one Z/2-graded vector space HPmod

even(A) ⊕
ΠHPmod

odd (A), where HPmod
even(A) (resp. HPmod

odd (A)) consists of elements of de-
gree zero (resp. degree +1) of HPmod

• (A) and Π is the functor of changing
the parity. We can interpret ξA in terms of (Z/2-graded) supergeometry as
a Gm-equivariant supervector bundle over the even formal line A1

form. The
structure of a Gm-equivariant supervector bundle ξA is equivalent to a filtra-
tion F (called Hodge filtration) by even numbers on HPmod

even(A) and by odd
numbers on HPmod

odd (A). The associated Z-graded vector space coincides with
H•(A,A).

We can say few words in support of the degeneration conjecture. One is,
of course, the classical Hodge-to-de Rham degeneration theorem (see Sect. 9.2
below). It is an interesting question to express the classical Hodge theory alge-
braically, in terms of a generator E of the derived category of coherent sheaves
and the corresponding A∞-algebra A = RHom(E , E). The degeneration con-
jecture also trivially holds for algebras of finite quivers without relations.

In classical algebraic geometry there are basically two approaches to the
proof of degeneration conjecture. One is analytic and uses Kähler metric,
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Hodge decomposition, etc. Another one is pure algebraic and uses the tech-
nique of reduction to finite characteristic (see [12]). Recently Kaledin (see
[24]) suggested a proof of a version of the degeneration conjecture based on
the reduction to finite characterstic.

Below we will formulate a conjecture which could lead to the definition
of crystalline cohomology for A∞-algebras. Notice that one can define ho-
mologically smooth and compact A∞-algebras over any commutative ring, in
particular, over the ring of integers Z. We assume that A is a flat Z-module.

Conjecture 9.5 Suppose that A is a weakly unital A∞-algebra over Z,
such that it is homologically smooth (but not necessarily compact). Trun-
cated negative cyclic complexes (C•(A,A) ⊗ Z[[u, p]]/(un, pm), b + uB) and
(C•(A,A) ⊗ Z[[u, p]]/(un, pm), b− puB) are quasi-isomorphic for all n,m ≥ 1
and all prime numbers p.

If, in addition, A is compact then the homology of either of the above
complexes is a flat module over Z[[u, p]]/(un, pm).

If the above conjecture is true then the degeneration conjecture, probably,
can be deduced along the lines of [12]. One can also make some conjectures
about Hochschild complex of an arbitrary A∞-algebra, not assuming that it
is compact or homologically smooth. More precisely, let A be a unital A∞-
algebra over the ring of p-adic numbers Zp. We assume that A is topologically
free Zp-module. Let A0 = A ⊗Zp

Z/p be the reduction modulo p. Then we
have the Hochschild complex (C•(A0, A0), b) and the Z/2-graded complex
(C•(A0, A0), b + B).

Conjecture 9.6 For any i there is natural isomorphism of Z/2-graded vector
spaces over the field Z/p:

H•(C•(A0, A0), b) " H•(C•(A0, A0), b + B).

There are similar isomorphisms for weakly unital and non-unital A∞-algebras,
if one replaces C•(A0, A0) by Cmod

• (A0, A0). Also one has similar isomorphisms
for Z/2-graded A∞-algebras.

The last conjecture presumably gives an isomorphism used in [12], but
does not imply the degeneration conjecture.

Remark 9.7 As we will explain elsewhere there are similar conjectures for
saturated A∞-categories (recall that they are generalizations of homologically
smooth compact A∞-algebras). This observation supports the idea of intro-
ducing the category NCMot of non-commutative pure motives. Objects of the
latter will be saturated A∞-categories over a field and HomNCMot(C1, C2) =
K0(Funct(C1, C2)) ⊗ Q/equiv where K0 means the K0-group of the A∞-
category of functors and equiv means numerical equivalence (i.e., the quiva-
lence relation generated by the kernel of the Euler form 〈E,F 〉 := χ(RHom(E,
F )), where χ is the Euler characteristic). The above category is worth of con-
sideration and will be discussed elsewhere (see [32]). In particular, one can
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formulate non-commutative analogs of Weil and Beilinson conjectures for the
category NCMot.

9.2 Relationship with the Classical Hodge Theory

Let X be a quasi-projective scheme of finite type over a field k of characteristic
zero. Then the category Perf(X) of perfect sheaves on X is equivalent to
H0(A−mod), where A−mod is the category of A∞-modules over a dg-algebra
A. Let us recall a construction of A. Consider a complex E of vector bundles
which generates the bounded derived category Db(Perf(X)) (see [5]). Then
A is quasi-isomorphic to RHom(E,E). More explicitly, let us fix an affine
covering X = ∪iUi. Then the complex A := ⊕i0,i1,...,in

Γ (Ui0 ∩ ... ∩ Uin
, E∗ ⊗

E)[−n], n = dimX computes RHom(E,E) and carries a structure of dg-
algebra. Different choices of A give rise to equivalent categories H0(A−mod)
(derived Morita equivalence).

Properties of X are encoded in the properties of A. In particular:
(a) X is smooth iff A is homologically smooth;
(b) X is compact iff A is compact.
Moreover, if X is smooth then

H•(A,A) " Ext•Db(Coh(X×X))(OΔ,OΔ) "

⊕i,j≥0H
i(X,∧jTX)[−(i + j)]]

where OΔ is the structure sheaf of the diagonal Δ ⊂ X ×X.
Similarly

H•(A,A) " ⊕i,j≥0H
i(X,∧jT ∗

X)[j − i].

The RHS of the last formula is the Hodge cohomology of X. One can con-
sider the hypercohomology H•(X,Ω•

X [[u]]/unΩ•
X [[u]]) equipped with the dif-

ferential uddR. Then the classical Hodge theory ensures degeneration of the
corresponding spectral sequence, which means that the hypercohomology is a
flat k[u]/(un)-module for any n ≥ 1. Usual de Rham cohomology H•

dR(X) is
isomorphic to the generic fiber of the corresponding flat vector bundle over
the formal line A1

form[−2], while the fiber at u = 0 is isomorphic to the
Hodge cohomology H•

Hodge(X) = ⊕i,j≥0H
i(X,∧jT ∗

X)[j− i]. In order to make
a connection with the “abstract” theory of the previous subsection we remark
that H•

dR(X) is isomorphic to the periodic cyclic homology HP•(A) while
H•(A,A) is isomorphic to H•

Hodge(X).

10 A∞-Algebras with Scalar Product

10.1 Main Definitions

Let (X, pt,Q) be a finite-dimensional formal pointed dg-manifold over a field
k of characteristic zero.
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Definition 10.1 A symplectic structure of degree N ∈ Z on X is given by
a cyclic closed 2-form ω of degree N such that its restriction to the tangent
space TptX is non-degenerate.

One has the following non-commutative analog of the Darboux lemma.

Proposition 10.2 Symplectic form ω has constant coefficients in some affine
coordinates at the point pt.

Proof. Let us choose an affine structure at the marked point and write
down ω = ω0 + ω1 + ω2 + ...., where ωl =

∑
i,j cij(x)dxi ⊗ dxj and cij(x) is

homogeneous of degree l (in particular, ω0 has constant coefficients). Next we
observe that the following lemma holds.

Lemma 10.3 Let ω = ω0 + r, where r = ωl + ωl+1 + ..., l ≥ 1. Then there
is a change of affine coordinates xi 
→ xi + O(xl+1) which transforms ω into
ω0 + ωl+1 + ....

Lemma implies the Proposition, since we can make an infinite product of
the above changes of variables (it is a well-defined infinite series). The resulting
automorphism of the formal neighborhood of x0 transforms ω into ω0.

Proof of the lemma. We have dcyclωj = 0 for all j ≥ l (see Sect. 7.2
for the notation). The change of variables is determined by a vector field
v = (v1, ..., vn) such that v(x0) = 0. Namely, xi 
→ xi − vi, 1 ≤ i ≤ n.
Moreover, we will be looking for a vector field such that vi = O(xl+1) for
all i.

We have Liev(ω) = d(ivω0)+d(ivr). Since dωl = 0 we have ωl = dαl+1 for
some form αl+1 = O(xl+1) in the obvious notation (formal Poincare lemma).
Therefore in order to kill the term with ωl we need to solve the equation
dαl+1 = d(ivω0). It suffices to solve the equation αl+1 = ivω0. Since ω0 is
non-degenerate, there exists a unique vector field v = O(xl+1) solving last
equation. This proves the lemma. �

Definition 10.4 Let (X, pt,Q, ω) be a non-commutative formal pointed sym-
plectic dg-manifold. A scalar product of degree N on the A∞-algebra A =
TptX[−1] is given by a choice of affine coordinates at pt such that the ω be-
comes constant and gives rise to a non-degenerate bilinear form A ⊗ A →
k[−N ].

Remark 10.5 Note that since LieQ(ω) = 0 there exists a cyclic function S ∈
Ω0

cycl(X) such that iQω = dS and {S, S} = 0 (here the Poisson bracket
corresponds to the symplectic form ω). It follows that the deformation theory
of a non-unital A∞-algebra A with the scalar product is controlled by the
DGLA Ω0

cycl(X) equipped with the differential {S, •}.

We can restate the above definition in algebraic terms. Let A be a finite-
dimensional A∞-algebra, which carries a non-degenerate symmetric bilinear
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form (, ) of degree N . This means that for any two elements a, b ∈ A such that
deg(a) + deg(b) = N we are given a number (a, b) ∈ k such that:

(1) for any collection of elements a1, ..., an+1 ∈ A the expression (mn(a1, ...,
an), an+1) is cyclically symmetric in the graded sense (i.e., it satisfies the
Koszul rule of signs with respect to the cyclic permutation of arguments);

(2) bilinear form (•, •) is non-degenerate.
In this case we will say that A is an A∞-algebra with the scalar product of

degree N .

10.2 Calabi–Yau Structure

The above definition requires A to be finite-dimensional. We can relax
this condition requesting that A is compact. As a result we will arrive
to a homological version of the notion of scalar product. More precisely,
assume that A is weakly unital compact A∞-algebra. Let CCmod

• (A) =
(CCmod

• (A,A)[u−1], b+uB) be the cyclic complex of A. Let us choose a coho-
mology class [ϕ] ∈ H•(CCmod

• (A))∗ of degree N . Since the complex (A,m1)
is a subcomplex of Cmod

• (A,A) ⊂ CCmod
• (A) we see that [ϕ] defines a linear

functional Tr[ϕ] : H•(A) → k[−N ].

Definition 10.6 We say that [ϕ] is homologically non-degenerate if the bilin-
ear form of degree N on H•(A) given by (a, b) 
→ Tr[ϕ](ab) is non-degenerate.

Note that the above bilinear form defines a symmetric scalar product of
degree N on H•(A) .

Theorem 10.7 For a weakly unital compact A∞-algebra A a homologically
non-degenerate cohomology class [ϕ] gives rise to a class of isomorphisms of
non-degenerate scalar products on a minimal model of A.

Proof. Since char k = 0 the complex (CCmod
• (A))∗ is quasi-isomorphic to

(Ω0
cycl(X)/k, LieQ).

Lemma 10.8 Complex (Ω2,cl
cycl(X), LieQ) is quasi-isomorphic to the complex

(Ω0
cycl(X)/k, LieQ).12

Proof. Notice that as a complex (Ω2,cl
cycl(X), LieQ) is isomorphic to the

complex Ω1
cycl(X)/dcycl Ω

0
cycl(X). The latter is quasi-isomorphic to

[O(X),O(X)]top via a db 
→ [a, b] (recall that [O(X),O(X)]top denotes the
topological closure of the commutator).

By definition Ω0
cycl(X) = O(X)/[O(X),O(X)]top. We know that O(X)/k

is acyclic, hence Ω0
cycl(X)/k is quasi-isomorphic to [O(X),O(X)]top. Hence

the complex (Ω2,cl
cycl(X), LieQ) is quasi-isomorphic to (Ω0

cycl(X)/k, LieQ). �

12 See also Proposition 5.5.1 from [19].



192 M. Kontsevich and Y. Soibelman

As a corollary we obtain an isomorphism of cohomology groups
H•(Ω2,cl

cycl(X)) " H•(Ω0
cycl(X)/k). Having a non-degenerate cohomology class

[ϕ] ∈ H•(CCmod
• (A))∗ " H•(Ω2,cl

cycl(X), LieQ) as above, we can choose its
representative ω ∈ Ω2,cl

cycl(X), LieQω = 0. Let us consider ω(x0). It can be
described pure algebraically such as follows. Notice that there is a natural
projection H•(Ω0

cycl(X)/k) → (A/[A,A])∗ which corresponds to the taking
the first Taylor coefficient of the cyclic function. Then the above evaluation
ω(x0) is the image of ϕ(x0) under the natural map (A/[A,A])∗ → (Sym2(A))∗

which assigns to a linear functional l the bilinear form l(ab).
We claim that the total map H•(Ω2,cl

cycl(X)) → (Sym2(A))∗ is the same
as the evaluation at x0 of the closed cyclic 2-form. Equivalently, we claim
that ω(x0)(a, b) = Trϕ(ab). Indeed, if f ∈ Ω0

cycl(X)/k is the cyclic func-
tion corresponding to ω then we can write f =

∑
i aixi + O(x2). Therefore

LieQ(f) =
∑

l,i,j aic
ij
l [xi, xj ] + O(x3), where cij

l are structure constants of
O(X). Dualizing we obtain the claim.

Proposition 10.9 Let ω1 and ω2 be two symplectic structures on the finite-
dimensional formal pointed minimal dg-manifold (X, pt,Q) such that [ω1] =
[ω2] in the cohomology of the complex (Ω2,cl

cycl(X), LieQ) consisting of closed
cyclic 2-forms. Then there exists a change of coordinates at x0 preserving Q
which transforms ω1 into ω2.

Corollary 10.10 Let (X, pt,Q) be a (possibly infinite-dimensional) formal
pointed dg-manifold endowed with a (possibly degenerate) closed cyclic 2-
form ω. Assume that the tangent cohomology H0(TptX) is finite-dimensional
and ω induces a non-degenerate pairing on it. Then on the minimal model of
(X, pt,Q) we have a canonical isomorphism class of symplectic forms modulo
the action of the group Aut(X, pt,Q).

Proof. Let M be a (finite-dimensional) minimal model of A. Choosing
a cohomology class [ϕ] as above we obtain a non-degenerate bilinear form
on M , which is the restriction ω(x0) of a representative ω ∈ Ω2,cl(X). By
construction this scalar product depends on ω. We would like to show that
in fact it depends on the cohomology class of ω, i.e., on ϕ only. This is the
corollary of the following result.

Lemma 10.11 Let ω1 = ω + LieQ(dα). Then there exists a vector field v
such that v(x0) = 0, [v,Q] = 0 and Liev(ω) = LieQ(dα).

Proof. As in the proof of Darboux lemma we need to find a vector field
v, satisfying the condition div(ω) = LieQ(dα). Let β = LieQ(α). Then
dβ = dLieQ(α) = 0. Since ω is non-degenerate we can find v satisfying the
conditions of the Proposition and such that div(ω) = LieQ(dα). Using this v
we can change affine coordinates transforming ω + LieQ(dα) back to ω. This
concludes the proof of the Proposition and the Theorem.�
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Presumably the above construction is equivalent to the one given in [23].
We will sometimes call the cohomology class [ϕ] a Calabi–Yau structure on
A (or on the corresponding non-commutative formal pointed dg-manifold X).
The following example illustrates the relation to geometry.

Example 10.12 Let X be a complex Calabi–Yau manifold of dimension n.
Then it carries a nowhere vanishing holomorphic n-form vol. Let us fix a
holomorphic vector bundle E and consider a dg-algebra A = Ω0,∗(X,End(E))
of Dolbeault (0, p)-forms with values in End(E). This dg-algebra carries a
linear functional a 
→

∫
X
Tr(a)∧vol. One can check that this is a cyclic cocycle

which defines a non-degenerate pairing on H•(A) in the way described above.

There is another approach to Calabi–Yau structures in the case when A
is homologically smooth. Namely, we say that A carries a Calabi–Yau struc-
ture of dimension N if A! " A[N ] (recall that A! is the A − A-bimodule
HomA−mod−A(A,A⊗A) introduced in Sect. 8.1. Then we expect the follow-
ing conjecture to be true.

Conjecture 10.13 If A is a homologically smooth compact finite-dimensional
A∞-algebra then the existence of a non-degenerate cohomology class [ϕ] of
degree dimA is equivalent to the condition A! " A[dimA].

If A is the dg-algebra of endomorphisms of a generator of Db(Coh(X))
where X is Calabi–Yau then the above conjecture holds trivially.

Finally, we would like to illustrate the relationship of the non-commutative
symplectic geometry discussed above with the commutative symplectic ge-
ometry of certain spaces of representations.13 More generally we would like
to associate with X = Spc(T (A[1])) a collection of formal algebraic vari-
eties, so that some “non-commutative” geometric structure on X becomes
a collection of compatible “commutative” structures on formal manifolds
M(X,n) := R̂ep0(O(X),Matn(k)), where Matn(k) is the associative alge-
bra of n × n matrices over k, O(X) is the algebra of functions on X and
R̂ep0(...) means the formal completion at the trivial representation. In other
words, we would like to define a collection of compatible geometric structure
on “Matn(k)-points” of the formal manifold X. In the case of symplectic
structure this philosophy is illustrated by the following result.

Theorem 10.14 Let X be a non-commutative formal symplectic manifold in
V ectk. Then it defines a collection of symplectic structures on all manifolds
M(X,n), n ≥ 1.

Proof. Let O(X) = A,O(M(X,n)) = B. Then we can choose isomor-
phisms A " k〈〈x1, ..., xm〉〉 and B " 〈〈xα,β

1 , ..., xα,β
m 〉〉, where 1 ≤ α, β ≤ n. To

any a ∈ A we can assign â ∈ B ⊗Matn(k) such that:

13 It goes back to [30] and since that time has been discussed in many papers, see
e.g. [18].
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x̂i =
∑

α,β

xα,β
i ⊗ eα,β ,

where eα,β is the n × n matrix with the only non-trivial element equal to 1
on the intersection of α-th line and β-th column. The above formulas define
an algebra homomorphism. Composing it with the map idB ⊗ TrMatn(k) we
get a linear map Ocycl(X) → O(M(X,n)). Indeed the closure of the commu-
tator [A,A] is mapped to zero. Similarly, we have a morphism of complexes
Ω•

cycl(X) → Ω•(M(X,n)), such that

dxi 
→
∑

α,β

dxα,β
i eα,β .

Clearly, continuous derivations of A (i.e., vector fields on X) give rise to the
vector fields on M(X,n).

Finally, one can see that a non-degenerate cyclic 2-form ω is mapped to the
tensor product of a non-degenerate 2-form on M(X,n) and a nondegenerate
2-form Tr(XY ) on Matn(k). Therefore a symplectic form on X gives rise to
a symplectic form on M(X,n), n ≥ 1. �

11 Hochschild Complexes as Algebras Over Operads
and PROPs

Let A be a strictly unital A∞-algebra over a field k of characteristic zero. In
this section we are going to describe a colored dg-operad P such that the pair
(C•(A,A), C•(A,A)) is an algebra over this operad. More precisely, we are
going to describe Z-graded k-vector spaces A(n,m) and B(n,m), n,m ≥ 0
which are components of the colored operad such that B(n,m) �= 0 for m = 1
only and A(n,m) �= 0 for m = 0 only together with the colored operad
structure and the action

(a) A(n, 0) ⊗ (C•(A,A))⊗n → C•(A,A),
(b) B(n, 1) ⊗ (C•(A,A))⊗n ⊗ C•(A,A) → C•(A,A).
Then, assuming that A carries a non-degenerate scalar product, we are

going to describe a PROP R associated with moduli spaces of Riemannian
surfaces and a structure of R-algebra on C•(A,A).

11.1 Configuration Spaces of Discs

We start with the spaces A(n, 0). They are chain complexes. The complex
A(n, 0) coincides with the complex Mn of the minimal operad M = (Mn)n≥0

described in [35], Sect. 5. Without going into details which can be found in loc.
cit. we recall main facts about the operad M . A basis of Mn as a k-vector space
is formed by n-labeled planar trees (such trees have internal vertices labeled
by the set {1, ..., n} as well as other internal vertices which are non-labeled
and each has the valency at least 3).
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We can depict n-labeled trees such as follows

1

root

2
1

1

root root

4

2
3

Labeled vertices are depicted as circles with numbers inscribed, non-
labeled vertices are depicted as black vertices. In this way we obtain a graded
operad M with the total degree of the basis element corresponding to a tree
T equal to

deg(T ) =
∑

v∈Vlab(T )

(1 − |v|) +
∑

v∈Vnonl(T )

(3 − |v|)

where Vlab(T ) and Vnonl(T ) denote the sets of labeled and non-labeled vertices
respectively , and |v| is the valency of the vertex v, i.e., the cardinality of the
set of edges attached to v.

The notion of an angle between two edges incoming in a vertex is illustrated
in the following figure (angles are marked by asteriscs).

* * *

* *

**

*
*

2

3

1

4

root

Operadic composition and the differential are described in [35], sects. 5.2,
5.3. We borrow from there the following figure which illustrates the operadic
composition of generators corresponding to labeled trees T1 and T2.
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Informally speaking, the operadic gluing of T2 to T1 at an internal vertex
v of T1 is obtained by:

(a) Removing from T1 the vertex v together with all incoming edges and
vertices.

(b) Gluing T2 to v (with the root vertex removed from T2). Then
(c) Inserting removed vertices and edges of T1 in all angles between in-

coming edges to the new vertex vnew.
(d) Taking the sum (with appropriate signs) over all possible inserting of

edges in (c).
The differential dM is a sum of the “local” differentials dv, where v runs

through the set of all internal vertices. Each dv inserts a new edge into the
set of edges attached to v. The following figure borrowed from [35] illustrates
the difference between labeled (white) and non-labeled (black) vertices.



Notes on A∞-Algebras, A∞-Categories and Non-Commutative Geometry 197

+

new

val > 1

val > 1

val > 1

val > 1new new

In this way we make M into a dg-operad. It was proved in [35], that
M is quasi-isomorphic to the dg-operad Chains(FM2) of singular chains on
the Fulton–Macpherson operad FM2. The latter consists of the compactified
moduli spaces of configurations of points in R2 (see e.g. [35], Sect. 7.2 for a
description). It was also proved in [35] that C•(A,A) is an algebra over the
operad M (Deligne’s conjecture follows from this fact). The operad FM2 is ho-
motopy equivalent to the famous operad C2 = (C2(n))n≥0 of two-dimensional
discs (little disc operad). Thus C•(A,A) is an algebra (in the homotopy sense)
over the operad Chains(C2).

11.2 Configurations of Points on the Cylinder

Let Σ = S1 × [0, 1] denotes the standard cylinder.
Let us denote by S(n) the set of isotopy classes of the following graphs

Γ ⊂ Σ:
(a) every graph Γ is a forest (i.e., disjoint union of finitely many trees

Γ = %iTi);
(b) the set of vertices V (Γ ) is decomposed into the union V∂Σ % Vlab %

Vnonl % V1 of four sets with the following properties:
(b1) the set V∂Σ is the union {in} ∪ {out} ∪ Vout of three sets of points

which belong to the boundary ∂Σ of the cylinder. The set {in} consists of
one marked point which belongs to the boundary circle S1 × {1} while the
set {out} consists of one marked point which belongs to the boundary circle
S1 × {0}. The set Vout consists of a finitely many unlableled points on the
boundary circle S1 × {0};

(b2) the set Vlab consists of n labeled points which belong to the surface
S1 × (0, 1) of the cylinder;

(b3) the set Vnonl consists of a finitely many non-labeled points which
belong to the surface S1 × (0, 1) of the cylinder;
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(b4) the set V1 is either empty or consists of only one element denoted by
1 ∈ S1 × (0, 1) and called special vertex;

(c) the following conditions on the valencies of vertices are imposed:
(c1) the valency of the vertex out is ≤ 1;
(c2) the valency of each vertex from the set V∂Σ \ Vout is equal to 1;
(c3) the valency of each vertex from Vlab is at least 1;
(c4) the valency of each vertex from Vnonl is at least 3;
(c5) if the set V1 is non-empty then the valency of the special vertex is

equal to 1. In this case the only outcoming edge connects 1 with the vertex
out.

(d) Every tree Ti from the forest Γ has its root vertex in the set V∂Σ .
(e) We orient each tree Ti down to its root vertex.

in

1

2

3

n .1

in in

out out
out

Remark 11.1 Let us consider the configuration space Xn, n ≥ 0 which con-
sists of (modulo C∗-dilation) equivalence classes of n points on CP1\{0,∞}
together with two direction lines at the tangent spaces at the points 0 and ∞.
One-point compactification X̂n admits a cell decomposition with cells (except
of the point X̂n\Xn) parametrized by elements of the set S(n). This can be
proved with the help of Strebel differentials (cf. [35], Sect. 5.5).

Previous remark is related to the following description of the sets S(n) (it
will be used later in the chapter). Let us contract both circles of the boundary
∂Σ into points. In this way we obtain a tree on the sphere. Points become
vertices of the tree and lines outcoming from the points become edges. There
are two vertices marked by in and out (placed at the north and south poles
respectively). We orient the tree towards to the vertex out. An additional
structure consists of:

(a) Marked edge outcoming from in (it corresponds to the edge outcoming
from in).

(b) Either a marked edge incoming to out (there was an edge incoming to
out which connected it with a vertex not marked by 1) or an angle between
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two edges incoming to out (all edges which have one of the endpoint vertices
on the bottom circle become after contracting it to a point the edges incoming
to out, and if there was an edge connecting a point marked by 1 with out, we
mark the angle between edges containing this line).

The reader notices that the star of the vertex out can be identified with a
regular k-gon, where k is the number of incoming to out edges. For this k-gon
we have either a marked point on an edge (case (a) above) or a marked angle
with the vertex in out (case (b) above).

11.3 Generalization of Deligne’s Conjecture

The definition of the operadic space B(n, 1) will be clear from the description
of its action on the Hochschild chain complex. The space B(n, 1) will have
a basis parametrized by elements of the set S(n) described in the previous
subsection. Let us describe the action of a generator of B(n, 1) on a pair
(γ1 ⊗ ...⊗γn, β), where γ1 ⊗ ...⊗γn ∈ C•(A,A)⊗n and β = a0 ⊗a1 ⊗ ...⊗al ∈
Cl(A,A). We attach elements a0, a1, ..., al to points on Σin

h , in a cyclic order,
such that a0 is attached to the point in. We attach γi to the ith numbered
point on the surface of Σh. Then we draw disjoint continuous segments (in all
possible ways, considering pictures up to an isotopy) starting from each point
marked by some element ai and oriented downstairs, with the requirements
(a–c) as above, with the only modification that we allow an arbitrary number
of points on S1×{1}. We attach higher multiplications mj to all non-numbered
vertices, so that j is equal to the incoming valency of the vertex. Reading from
the top to the bottom and composing γi and mj we obtain (on the bottom
circle) an element b0 ⊗ ...⊗ bm ∈ C•(A,A) with b0 attached to the vertex out.
If the special vertex 1 is present then we set b0 = 1. This gives the desired
action.

m2

m2

m2

.

..
.

.1
γ1

γ3

γ2

a
aa0n

1
2

ai

b

bb

1

m
i

= ina

b0 = out
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Composition of the operations in B(n, 1) corresponds to the gluing of the
cylinders such that the point out of the top cylinder is identified with the
point in of the bottom cylinder. If after the gluing there is a line from the
point marked 1 on the top cylinder which does not end at the point out of
the bottom cylinder, we will declare such a composition to be equal to zero.

Let us now consider a topological colored operad Ccol
2 = (Ccol

2 (n,m))n,m≥0

with two colors such that Ccol
2 (n,m) �= ∅ only if m = 0, 1 and

(a) In the case m = 0 it is the little disc operad.
(b) In the case m = 1 Ccol

2 (n, 1) is the moduli space (modulo rotations)
of the configurations of n ≥ 1 discs on the cyliner S1 × [0, h] h ≥ 0 and two
marked points on the boundary of the cylinder. We also add the degenerate
circle of configurations n = 0, h = 0. The topological space Ccol

2 (n, 1) is homo-
topically equivalent to the configuration space Xn described in the previous
subsection.

Let Chains(Ccol
2 ) be the colored operad of singular chains on Ccol

2 . Then,
similarly to [35], Sect. 7, one proves (using the explicit action of the colored
operad P = (A(n,m), B(n,m))n,m≥0 described above) the following result.

Theorem 11.2 Let A be a unital A∞-algebra. Then the pair (C•(A,A), C•
(A,A)) is an algebra over the colored operad Chains(Ccol

2 ) (which is quasi-
isomorphic to P ) such that for h = 0, n = 0 and coinciding points in = out,
the corresponding operation is the identity.

Remark 11.3 The above Theorem generalizes Deligne’s conjecture (see e.g.
[35]). It is related to the abstract calculus associated with A (see [T, 48]). The
reader also notices that for h = 0, n = 0 we have the moduli space of two
points on the circle. It is homeomorphic to S1. Thus we have an action of S1

on C•(A,A). This action gives rise to the Connes differential B.

Similarly to the case of little disc operad, one can prove the following
result.

Proposition 11.4 The colored operadCcol
2 is formal, i.e., it is quasi-isomorphic

to its homology colored operad.

If A is non-unital we can consider the direct sum A1 = A ⊕ k and make
it into a unital A∞-algebra. The reduced Hochschild chain complex of A1 is
defined as Cred

• (A1, A1) = ⊕n≥0A1 ⊗ ((A1/k)[1])⊗n with the same differen-
tial as in the unital case. One defines the reduced Hochschild cochain com-
plex C•

red(A1, A1) similarly. We define the modified Hochschild chain complex
Cmod

• (A,A) from the following isomorphism of complexes Cred
• (A1, A1) "

Cmod
• (A,A) ⊕ k. Similarly, we define the modified Hochschild cochain com-

plex from the decomposition C•
red(A1, A1) " C•

mod(A,A)⊕ k. Then, similarly
to the Theorem 11.3.1 one proves the following result.

Proposition 11.5 The pair (Cmod
• (A,A), C•

mod(A,A)) is an algebra over the
colored operad which is an extension of Chains(Ccol

2 ) by null-ary operations
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on Hochschild chain and cochain complexes, which correspond to the unit
in A, and such that for h = 0, n = 0 and coinciding points in = out, the
corresponding operation is the identity.

11.4 Remark About Gauss–Manin Connection

Let R = k[[t1, ..., tn]] be the algebra of formal series and A be an R-flat
A∞-algebra. Then the (modified) negative cyclic complex CC−,mod

• (A) =
(C•(A,A)[[u]], b + uB) is an R[[u]]-module. It follows from the existense of
Gauss-Manin connection (see [16]) that the cohomology HC−,mod

• (A) is in
fact a module over the ring

DR(A) := k[[t1, ..., tn, u]][u∂/∂t1, ..., u∂/∂tn].

Inedeed, if ∇ is the Gauss–Manin connection from [16] then u∂/∂ti acts on
the cohomology as u∇∂/∂ti

, 1 ≤ i ≤ n.
The above considerations can be explained from the point of view of conjec-

ture below. Let g = C•(A,A)[1] be the DGLA associated with the Hochschild
cochain complex and M := (CC−,mod

• (A). We define a DGLA ĝ which is the
crossproduct (g ⊗ k〈ξ〉) � k(∂/∂ξ), where deg ξ = +1.

Conjecture 11.6 There is a structure of an L∞-module on M over ĝ which
extends the natural structure of a g-module and such that ∂/∂ξ acts as Connes
differential B. Moreover this structure should follow from the P -algebra struc-
ture described in Sect. 11.3.

It looks plausible that the formulas for the Gauss–Manin connection from
[16] can be derived from our generalization of Deilgne’s conjecture. We will
discuss flat connections on periodic cyclic homology later in the text.

11.5 Flat Connections and the Colored Operad

We start with Z-graded case. Let us interpret the Z-graded formal scheme
Spf(k[[u]]) as even formal line equipped with the Gm-action u 
→ λ2u.
The space HC−,mod

• (A) can be interpreted as a space of sections of a Gm-
equivariant vector bundle ξA over Spf(k[[u]]) corresponding to the k[[u]]-flat
module lim←−n

H•(C(n)
• (A,A)). The action of Gm identifies fibers of this vector

bundle over u �= 0. Thus we have a natural flat connection ∇ on the restriction
of ξA to the complement of the point 0 which has the pole of order one at
u = 0.

Here we are going to introduce a different construction of the connection
∇ which works also in Z/2-graded case. This connection will have in general
a pole of degree two at u = 0. In particular we have the following result.

Proposition 11.7 The space of section of the vector bundle ξA can be en-
dowed with a structure of a k[[u]][[u2∂/∂u]]-module.



202 M. Kontsevich and Y. Soibelman

In fact we are going to give an explicit construction of the connection,
which is based on the action of the colored dg-operad P discussed in Sect. 11.3
(more precisely, an extension Pnew of P , see below). Before presenting an
explicit formula, we will make few comments.

1. For any Z/2-graded A∞-algebra A one can define canonically a 1-
parameter family of A∞-algebras Aλ, λ ∈ Gm, such that Aλ = A as a Z/2-
graded vector space and mAλ

n = λmA
n .

2. For simplicity we will assume that A is strictly unital. Otherwise we will
work with the pair (Cmod

• (A,A), C•
mod(A,A)) of modified Hochschild com-

plexes.
3. We can consider an extension Pnew of the dg-operad P allowing any

non-zero valency for a non-labeled (black) vertex( in the definition of P we
required that such a valency was at least three). All the formulas remain the
same. But the dg-operad Pnew is no longer formal. It contains a dg-suboperad
generated by trees with all vertices being non-labeled. Action of this suboperad
Pnew

nonl is responsible for the flat connection discussed below.
4. In addition to the connection along the variable u one has the Gauss–

Manin connection which acts along the fibers of ξA (see Sect. 11.4). Probably
one can write down an explicit formula for this connection using the action of
the colored operad Pnew. In what follows are going to describe a connection
which presumably coincides with the Gauss-Manin connection.

Let us now consider a dg-algebra k[B, γ0, γ2] which is generated by the
following operations of the colored dg-operad Pnew:

(a) Connes differential B of degree −1. It can be depicted such as follows
(cf. Sect. 7.3):

in

.B= .1

out
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(b) Generator γ2 of degree 2, corresponding to the following figure:

in

out

γ2 =
.

.

(c) Generator γ0 of degree 0, where 2γ0 is depicted below:

+

in in in

out
outout

.1 .1 .1. ..
++2γ0 =

Proposition 11.8 The following identities hold in Pnew:

B2 = dB = dγ2 = 0, dγ0 = [B, γ2],

Bγ0 + γ0B := [B, γ0]+ = −B.

Here by d we denote the Hochschild chain differential (previously it was de-
noted by b).

Proof. Let us prove that [B, γ0] = −B, leaving the rest as an exercise to the
reader. One has the following identities for the compositions of operations in
Pnew: Bγ0 = 0, γ0B = B. Let us check, for example, the last identity. Let us
denote by W the first summand on the figure defining 2γ0. Then γ0B = 1

2WB.
The latter can be depicted in the following way:
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.

out2

out1 = in2

in1

B =

W =
.1 .

.1

It is easily seen equals to 2 · 1/2B = B. �

Corollary 11.9 Hochschild chain complex C•(A,A) is a dg-module over the
dg-algebra k[B, γ0, γ2].

Let us consider the truncated negative cyclic complex (C•(A,A)[[u]]/(un),
du = d+uB). We introduce a k-linear map ∇ of C•(A,A)[[u]]/(un) into itself
such that ∇u2∂/∂u = u2∂/∂u− γ2 + uγ0. Then we have:

(a) [∇u2∂/∂u, du] = 0;
(b) [∇u2∂/∂u, u] = u2.
Let us denote by V the unital dg-algebra generated by ∇u2∂/∂u and u,

subject to the relations (a), (b) and the relation un = 0. From (a) and (b)
one deduces the following result.

Proposition 11.10 The complex (C•(A,A)[[u]]/(un), du = d + uB) is a V -
module. Moreover, assuming the degeneration conjecture, we see that the
operator ∇u2∂/∂u defines a flat connection on the cohomology bundle

H•(C•(A,A)[[u]]/(un), du)

which has the only singularity at u = 0 which is a pole of second order.

Taking the inverse limit over n we see that H•(C•(A,A)[[u]], du) gives rise
to a vector bundle over A1

form[−2] which carries a flat connection with the
second order pole at u = 0. It is interesting to note the difference between Z-
graded and Z/2-graded A∞-algebras. It follows from the explicit formula for
the connection ∇ that the coefficient of the second degree pole is represented
by multiplication by a cocyle (mn)n≥1 ∈ C•(A,A). In cohomology it is trivial
in Z-graded case (because of the invariance with respect to the group action
mn 
→ λ mn), but non-trivial in Z/2-graded case. Therefore the order of the
pole of ∇ is equal to one for Z-graded A∞-algebras and is equal to two for
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Z/2-graded A∞-algebras. We see that in Z-graded case the connection along
the variable u comes from the action of the group Gm on higher products mn,
while in Z/2-graded case it is more complicated.

11.6 PROP of Marked Riemann Surfaces

In this section we will describe a PROP naturally acting on the Hochschild
complexes of a finite-dimensional A∞-algebra with the scalar product of de-
gree N .

Since we have a quasi-isomorphism of complexes

C•(A,A) " (C•(A,A))∗[−N ]

it suffices to consider the chain complex only.
In this subsection we will assume that A is either Z-graded (then N is

an integer) or Z/2-graded (then N ∈ Z/2). We will present the results for
non-unital A∞-algebras. In this case we will consider the modified Hochschild
chain complex

Cmod
• (A,A) = ⊕n≥0A⊗ (A[1])⊗n

⊕
⊕n≥1(A[1])⊗n,

equipped with the Hochschild chain differential (see Sect. 7.4).
Our construction is summarized in (i–ii) below.

(i) Let us consider the topological PROP M = (M(n,m))n,m≥0 consisting
of moduli spaces of metrics on compacts oriented surfaces with bondary
consisting of n+m circles and some additional marking (see precise def-
inition below).

(ii) Let Chains(M) be the corresponding PROP of singular chains. Then
there is a structure of a Chains(M)-algebra on Cmod

• (A,A), which is
encoded in a collection of morphisms of complexes

Chains(M(n,m)) ⊗ Cmod
• (A,A)⊗n → (Cmod

• (A,A))⊗m.

In addition one has the following:
(iii) If A is homologically smooth and satisfies the degeneration property

then the structure of Chains(M)-algebra extends to a structure of a
Chains(M)-algebra, where M is the topological PROP of stable com-
pactifications of M(n,m).

Definition 11.11 An element of M(n,m) is an isomorphism class of triples
(Σ, h,mark) where Σ is a compact oriented surface (not necessarily con-
nected) with metric h and mark is an orientation preserving isometry be-
tween a neighborhood of ∂Σ and the disjoint union of n + m flat semiannuli
%1≤i≤n(S1 × [0, ε))%%1≤i≤m(S1 × [−ε, 0]), where ε is a sufficiently small pos-
itive number. We will call n circle “inputs” and the rest m circles “outputs”.
We will assume that each connected component of Σ has at least one input
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and there are no discs among the connected components. Also we will add
Σ = S1 to M(1, 1) as the identity morphism. It can be thought of as the limit
of cylinders S1 × [0, ε] as ε → 0.

The composition is given by the natural gluing of surfaces.
Let us describe a construction of the action of Chains(M) on the Hochschild

chain complex. In fact, instead of Chains(M) we will consider a quasi-
isomorphic dg-PROP R = (R(n,m)n,m≥0) generated by ribbon graphs with
additional data. In what follows we will skip some technical details in the defi-
nition of the PROP R. They can be recovered in a more or less straightforward
way.

It is well-known (and can be proved with the help of Strebel differ-
entials) that M(n,m) admits a stratification with strata parametrized by
graphs described below. More precisely, we consider the following class of
graphs.

(1) Each graph Γ is a (not necessarily connected) ribbon graph (i.e., we are
given a cyclic order on the set Star(v) of edges attached to a vertex v of Γ ).
It is well-known that replacing an edge of a ribbon graph by a thin stripe
(thus getting a “fat graph”) and gluing stripes in the cyclic order one gets a
Riemann surface with the boundary.

(2) The set V (Γ ) of vertices of Γ is the union of three sets: V (Γ ) =
Vin(Γ ) ∪ Vmiddle(Γ ) ∪ Vout(Γ ). Here Vin(Γ ) consists of n numbered vertices
in1, ..., inn of the valency 1 ( the outcoming edges are called tails), Vmiddle(Γ )
consists of vertices of the valency ≥ 3, and Vout(Γ ) consists of m numbered
vertices out1, ..., outm of valency ≥ 1.

(3) We assume that the Riemann surface corresponding to Γ has n con-
nected boundary components each of which has exactly one input vertex.

(4) For every vertex outj ∈ Vout(Γ ), 1 ≤ j ≤ m we mark either an incoming
edge or a pair of adjacent (we call such a pair of edges a corner).

marked edge marked
corner

More pedantically, let E(Γ ) denotes the set of edges of Γ and Eor(Γ )
denotes the set of pairs (e, or) where e ∈ E(Γ ) and or is one of two possible
orientations of e. There is an obvious map Eor(Γ ) → V (Γ ) × V (Γ ) which
assigns to an oriented edge the pair of its endpoint vertices: source and target.
The free involution σ acting on Eor(Γ ) (change of orientation) corresponds to
the permutation map on V (Γ ) × V (Γ ). Cyclic order on each Star(v) means
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that there is a bijection ρ : Eor(Γ ) → Eor(Γ ) such that orbits of iterations
ρn, n ≥ 1 are elements of Star(v) for some v ∈ V (Γ ). In particular, the corner
is given either by a pair of coinciding edges (e, e) such that ρ(e) = e or by a
pair edges e, e′ ∈ Star(v) such that ρ(e) = e′. Let us define a face as an orbit
of ρ ◦ σ. Then faces are oriented closed paths. It follows from the condition
(2) that each face contains exactly one edge outcoming from some ini.

We depict below two graphs in the case g = 0, n = 2,m = 0.

deg Γ = 0. .in1

in2

deg Γ = −1

in1

in2.

.

Here is a figure illustrating the notion of face

.

.in1

in2 .

.

Two faces: one contains in1,
another contains in2

Remark 11.12 The above data (i.e., a ribbon graph with numerations of in
and out vertices) have no automorphisms. Thus we can identify Γ with its
isomorphism class.



208 M. Kontsevich and Y. Soibelman

The functional (mn(a1, ..., an), an+1) is depicted such as follows.

.
v mn

n = |v|–1

We define the degree of Γ by the formula

deg Γ =
∑

v∈Vmiddle(Γ )

(3 − |v|) +
∑

v∈Vout(Γ )

(1 − |v|) +
∑

v∈Vout(Γ )

εv −Nχ(Γ ),

where εv = −1, if v contains a marked corner and εv = 0 otherwise. Here
χ(Γ ) = |V (Γ )| − |E(Γ )| denotes the Euler characteristic of Γ .

Definition 11.13 We define R(n,m) as a graded vector space which is a
direct sum ⊕ΓψΓ of 1-dimensional graded vector spaces generated by graphs
Γ as above, each summand has degree deg Γ .

One can see that ψΓ is naturally identified with the tensor product of
one-dimensional vector spaces (determinants) corresponding to vertices of Γ .

Now, having a graph Γ which satisfies conditions (1–3) above and Hoch-
schild chains γ1, ..., γn ∈ Cmod

• (A,A) we would like to define an element of
Cmod

• (A,A)⊗m. Roughly speaking we are going to assign the above n elements
of the Hochschild complex to n faces corresponding to vertices ini, 1 ≤ i ≤ n,
then assign tensors corresponding to higher products ml to internal vertices
v ∈ Vmiddle(Γ ), then using the convolution operation on tensors given by the
scalar product on A to read off the resulting tensor from outj , 1 ≤ j ≤ m.
More precise algorithm is described below.

(a) We decompose the modified Hochschild complex such as follows:

Cmod
• (A,A) = ⊕l≥0,ε∈{0,1}C

mod
l,ε (A,A),

where Cmod
l,ε=0(A,A) = A⊗ (A[1])⊗l and Cmod

l,ε=1(A,A) = k⊗ (A[1])⊗l according
to the definition of modified Hochschild chain complex. For any choice of
li ≥ 0, εi ∈ {0, 1}, 1 ≤ i ≤ n we are going to construct a linear map of degree
zero
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fΓ : ψΓ ⊗ Cmod
l1,ε1

(A,A) ⊗ ...⊗ Cmod
ln,ε1

(A,A) → (Cmod
• (A,A))⊗m.

The result will be a sum fΓ =
∑

Γ ′ fΓ ′ of certain maps. The description
of the collection of graphs Γ ′ is given below.

(b) Each new graph Γ ′ is obtained from Γ by adding new edges. More
precisely one has V (Γ ′) = V (Γ ) and for each vertex ini ∈ Vin(Γ ) we add li
new outcoming edges. Then the valency of ini becomes li + 1.

.

.
in1

m3

m3

in2

c

..
.

.

More pedantically, for every i, 1 ≤ i ≤ n we have constructed a map from
the set {1, ..., li} to a cyclically ordered set which is an orbit of ρ ◦ σ with
removed tail edge outcoming from ini. Cyclic order on the edges of Γ ′ is
induced by the cyclic order at every vertex and the cyclic order on the path
forming the face corresponding to ini.

.ini

corner

(c) We assign γi ∈ Cli,εi
to ini. We depict γi as a “wheel” representing the

Hochschild cocycle. It is formed by the endpoints of the li+1 edges outcoming
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from ini ∈ V (Γ ′) and taken in the cyclic order of the corresponding face. If
εi = 1 then (up to a scalar) γi = 1 ⊗ a1 ⊗ ... ⊗ ali and we require that the
tensor factor 1 corresponds to zero in the cyclic order.

.
.

ini

1

a1

a2

a3 a4

γi

(d) We remove from considerations graphs Γ which do not obey the fol-
lowing property after the step (c):

the edge corresponding to the unit 1 ∈ k (see step c)) is of the type (ini, v)
where either v ∈ Vmiddle(Γ ′) and |v| = 3 or v = outj for some 1 ≤ j ≤ m and
the edge (ini, outj) was the marked edge for outj .

Let us call unit edge the one which satisfies one of the above properties.
We define a new graph Γ ′′ which is obtained from Γ by removing unit edges.

(e) Each vertex now has the valency |v| ≥ 2. We attach to every such
vertex either:

the tensor c ∈ A⊗A (inverse to the scalar product), if |v| = 2,
or
the tensor (m|v|−1(a1, ..., a|v|−1), a|v|) if |v| ≥ 3. The latter can be identified

with the element of A⊗|v| (here we use the non-degenerate scalar product
on A).

Let us illustrate this construction.

.

.

c

γ1

1

.γ2

.
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(f) Let us contract indices of tensors corresponding to Vin(Γ ′′)∪Vmiddle(Γ ′′)
(see c, e) along the edges of Γ ′′ using the scalar product on A. The result will
be an element aout of the tensor product ⊗1≤j≤mAStarΓ ′′ (outj).

(g) Last thing we need to do is to interpret the element aout as an element
of Cmod

• (A,A). There are three cases.
Case 1. When we constructed Γ ′′ there was a unit edge incoming to some

outj . Then we reconstruct back the removed edge, attach 1 ∈ k to it, and
interpret the resulting tensor as an element of Cmod

|outj |,εj=1(A,A).
Case 2. There was no removed unit edge incoming to outj and we had

a marked edge (not a marked corner) at the vertex outj . Then we have an
honest element of Cmod

|outj |,εj=0(A,A)
Case 3. Same as in Case 2, but there was a marked corner at outj ∈

Vout(Γ ). We have added and removed new edges when constructed Γ ′′. There-
fore the marked corner gives rise to a new set of marked corners at outj consid-
ered as a vertex of Γ ′′. Inside every such a corner we insert a new edge, attach
the element 1 ∈ k to it and take the sum over all the corners. In this way we
obtain an element of Cmod

|outj |,εj=1(A,A). This procedure is depicted below.

e1 and e2 are new edges.

1

e1

e2

Three new
corners with
new unit edges

outj

e1

e2

e1

e2

1

e1

e2

1

+

+

.

.

.

.

out j

outj

outj
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This concludes the construction of fΓ . Notice that R is a dg-PROP with
the differential given by the insertion of a new edge between two vertices from
Vmiddle(Γ ).

Proof of the following Proposition will be given elsewhere.

Proposition 11.14 The above construction gives rise to a structure of a
R-algebra on Cmod

• (A,A).

Remark 11.15 The above construction did not use homological smoothness
of A.

Finally we would like to say few words about an extension of the R-action
to the Chains(M)-action. More details and application to Topological Field
Theory will be given in [22].

If we assume the degeneration property for A, then the action of the
PROP R can be extended to the action of the PROP Chains(M) of sin-
gular chains of the topological PROP of stable degenerations of Mmarked

g,n,m .
In order to see this, one introduces the PROP D freely generated by R(2, 0)
and R(1, 1), i.e., by singular chains on the moduli space of cylinders with two
inputs and zero outputs (they correspond to the scalar product on C•(A,A))
and by cylinders with one input and one output (they correspond to mor-
phisms C•(A,A) → C•(A,A)). In fact the (non-symmetric) bilinear form
h : H•(A,A) ⊗H•(A,A) → k does exist for any compact A∞-algebra A. It is
described by the graph of degree zero on the figure in Sect. 11.6. This is a gen-
eralization of the bilinear form (a, b) ∈ A/[A,A]⊗A/[A,A] 
→ Tr(axb) ∈ k. It
seems plausible that homological smoothness implies that h is non-degenerate.
This allows us to extend the action of the dg sub-PROP D ⊂ R to the ac-
tion of the dg PROP D′ ⊂ R which contains also R(0, 2) (i.e., the inverse
to the above bilinear form). If we assume the degeneration property, then we
can “shrink” the action of the homologically non-trivial circle of the cylinders
(since the rotation around this circle corresponds to the differential B). Thus
D′ is quasi-isomorphic to the dg-PROP of chains on the (one-dimensional)
retracts of the above cylinders (retraction contracts the circle). Let us denote
the dg-PROP generated by singular chains on the retractions by D′′. Thus,
assuming the degeneration property, we see that the free product dg-PROP
R′ = R ∗D D′′ acts on Cmod

• (A,A). One can show that R′ is quasi-isomorphic
to the dg-PROP of chains on the topological PROP M

marked

g,n,m of stable com-
pactifications of the surfaces from Mmarked

g,n,m .

Remark 11.16 (a) The above construction is generalization of the construc-
tion from [31], which assigns cohomology classes of Mg,n to a finite-dimen-
sional A∞-algebra with scalar product (trivalent graphs were used in [31]).

(b) Different approach to the action of the PROP R was suggested in [8].
The above Proposition gives rise to a structure of Topological Field Theory
associated with a non-unital A∞-algebra with scalar product. If the degener-
ation property holds for A then one can define a Cohomological Field Theory
in the sense of [34].
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(c) Homological smoothness of A is closely related to the existence of a
non-commutative analog of the Chern class of the diagonal Δ ⊂ X ×X of a
projective scheme X. This Chern class gives rise to the inverse to the scalar
product on A. This topic will be discussed in the subsequent study devoted
to A∞-categories.

12 Appendix

12.1 Non-Commutative Schemes and Ind-Schemes

Let C be an Abelian k-linear tensor category. To simplify formulas we will
assume that it is strict (see [41]). We will also assume that C admits infinite
sums. To simplify the exposition we will assume below (and in the main body
of the paper) that C = V ectZk .

Definition 12.1 The category of non-commutative affine k-schemes in C (no-
tation NAffC) is the one opposite to the category of associative unital k-
algebras in C.

The non-commutative scheme corresponding to the algebra A is denoted
by Spec(A). Conversely, if X is a non-commutative affine scheme then the
corresponding algebra (algebra of regular functions on X) is denoted by O(X).
By analogy with commutative case we call a morphism f : X → Y a closed
embedding if the corresponding homomorphism f∗ : O(Y ) → O(X) is an
epimorphism.

Let us recall some terminology of ind-objects (see e.g., [1, 20, 21]). For a
covariant functor φ : I → A from a small filtering category I (called filtrant
in [21]) there is a notion of an inductive limit “ lim−→

′′ φ ∈ Â and a projec-
tive limit “ lim←−

′′ φ ∈ Â. By definition “ lim−→
′′ φ(X) = lim−→HomA(X,φ(i)) and

“ lim←−
′′ φ(X) = lim−→HomA(φ(i),X). All inductive limits form a full subcate-

gory Ind(A) ⊂ Â of ind-objects in A. Similarly all projective limits form a
full subcategory Pro(A) ⊂ Â of pro-objects in A.

Definition 12.2 Let I be a small filtering category and F : I → NAffC
a covariant functor. We say that “ lim−→

′′ F is a non-commutative ind-affine
scheme if for a morphism i → j in I the corresponding morphism F (i) → F (j)
is a closed embedding.

In other words a non-commutative ind-affine scheme X is an object of
Ind(NAffC), corresponding to the projective limit lim←− Aα, α ∈ I, where each
Aα is a unital associative algebra in C and for a morphism α → β in I the
corresponding homomorphism Aβ → Aα is a surjective homomorphism of
unital algebras (i.e., one has an exact sequence 0 → J → Aβ → Aα → 0).
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Remark 12.3 Not all categorical epimorphisms of algebras are surjective ho-
momorphisms (although the converse is true). Nevertheless one can define
closed embeddings of affine schemes for an arbitrary Abelian k-linear cate-
gory, observing that a surjective homomorphism of algebras f : A → B is
characterized categorically by the condition that B is the cokernel of the pair
of the natural projections f1,2 : A×B A → A defined by f .

Morphisms between non-commutative ind-affine schemes are defined as
morphisms between the corresponding projective systems of unital algebras.
Thus we have

HomNAffC (lim−→
I

Xi, lim−→
J

Yj) = lim←−
I

lim−→
J

HomNAffC (Xi, Yj).

Let us recall that an algebra M ∈ Ob(C) is called nilpotent if the natural
morphism M⊗n → M is zero for all sufficiently large n.

Definition 12.4 A non-commutative ind-affine scheme X̂ is called formal if it
can be represented as X̂ = lim−→Spec(Ai), where (Ai)i∈I is a projective system
of associative unital algebras in C such that the homomorphisms Ai → Aj are
surjective and have nilpotent kernels for all morphisms j → i in I.

Let us consider few examples in the case when C = V ectk.

Example 12.5 In order to define the non-commutative formal affine line Â1
NC

it suffices to define Hom(Spec(A), Â1
NC) for any associative unital algebra A.

We define HomNAffk
(Spec(A), Â1

NC) = lim−→ HomAlgk
(k[[t]]/(tn), A). Then

the set of A-points of the non-commutative formal affine line consists of all
nilpotent elements of A.

Example 12.6 For an arbitrary set I the non-commutative formal affine space
ÂI

NC corresponds, by definition, to the topological free algebra k〈〈ti〉〉i∈I .
If A is a unital k-algebra then any homomorphism k〈〈ti〉〉i∈I → A maps
almost all ti to zero and the remaining generators are mapped into nilpo-
tent elements of A. In particular, if I = N = {1, 2, ...} then ÂN

NC =
lim−→Spec(k〈〈t1, ..., tn〉〉/(t1, ..., tn)m), where (t1, ..., tn) denotes the two-sided
ideal generated by ti, 1 ≤ i ≤ n and the limit is taken over all n,m → ∞.

By definition, a closed subscheme Y of a scheme X is defined by a two-
sided ideal J ⊂ O(X). Then O(Y ) = O(X)/J . If Y ⊂ X is defined by a
two-sided ideal J ⊂ O(X), then the completion of X along Y is a formal
scheme corresponding to the projective limit of algebras lim←−n

O(X)/Jn. This
formal scheme will be denoted by X̂Y or by Spf(O(X)/J).

Non-commutative affine schemes over a given field k form symmetric
monoidal category. The tensor structure is given by the ordinary tensor prod-
uct of unital algebras. The corresponding tensor product of non-commutative
affine schemes will be denoted by X ⊗ Y . It is not a categorical product,
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differently from the case of commutative affine schemes (where the tensor
product of algebras corresponds to the Cartesian product X × Y ). For non-
commutative affine schemes the analog of the Cartesian product is the free
product of algebras.

Let A,B be free algebras. Then Spec(A) and Spec(B) are non-commutative
manifolds. Since the tensor product A⊗B in general is not a smooth algebra,
the non-commutative affine scheme Spec(A⊗B) is not a manifold.

Let X be a non-commutative ind-affine scheme in C. A closed k-point x ∈
X is by definition a homomorphism of O(X) to the tensor algebra generated
by the unit object 1. Let mx be the kernel of this homomorphism. We define
the tangent space TxX in the usual way as (mx/m

2
x)∗ ∈ Ob(C). Here m2

x is
the image of the multiplication map m⊗2

x → mx.
A non-commutative ind-affine scheme with a marked closed k-point will

be called pointed. There is a natural generalization of this notion to the case
of many points. Let Y ⊂ X be a closed subscheme of disjoint closed k-points
(it corresponds to the algebra homomorphism O(X) → 1 ⊕ 1 ⊕ ...). Then
X̂Y is a formal manifold. A pair (X̂Y , Y ) (often abbreviated by X̂Y ) will be
called (non-commutative) formal manifold with marked points. If Y consists of
one such point then (X̂Y , Y ) will be called (non-commutative) formal pointed
manifold.

12.2 Proof of Theorem 2.1.1

In the category AlgCf every pair of morphisms has a kernel. Since the functor
F is left exact and the category AlgCf is Artinian, it follows from [20], Sect. 3.1
that F is strictly pro-representable. This means that there exists a projective
system of finite-dimensional algebras (Ai)i∈I such that, for any morphism
i → j the corresponding morphsim Aj → Ai is a categorical epimorphism and
for any A ∈ Ob(AlgCf ) one has

F (A) = lim−→
I

HomAlgCf
(Ai, A).

Equivalently,
F (A) = lim−→

I

HomCoalgCf
(A∗

i , A
∗),

where (A∗
i )i∈I is an inductive system of finite-dimensional coalgebras and for

any morphism i → j in I we have a categorical monomorphism gji : A∗
i → A∗

j .
All what we need is to replace the projective system of algebras (Ai)i∈I

by another projective system of algebras (Ai)i∈I such that
(a) functors “lim←−”hAi

and “lim←−”hAi
are isomorphic (here hX is the functor

defined by the formula hX(Y ) = Hom(X,Y ));
(b) for any morphism i → j the corresponding homomorphism of algebras

f ij : Aj → Ai is surjective.
Let us define Ai =

⋂
i→j Im(fij), where Im(fij) is the image of the homo-

morphism fij : Aj → Ai corresponding to the morphism i → j in I. In order
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to prove a) it suffices to show that for any unital algebra B in Cf the natural
map of sets

lim−→
I

HomCf (Ai, B) → lim−→
I

HomCf (Ai, B)

(the restriction map) is well-defined and bijective.
The set lim−→I

HomCf (Ai, B) is isomorphic to (
⊔

I HomCf (Ai, B))/equiv,
where two maps fi : Ai → B and fj : Aj → B such that i → j are equivalent
if fifij = fj . Since Cf is an Artinian category, we conclude that there exists
Am such that fim(Am) = Ai, fjm(Am) = Aj . From this observation one easily
deduces that fij(Aj) = Ai. It follows that the morphism of functors in (a) is
well-defined and (b) holds. The proof that morphisms of functors biejectively
correspond to homomorphisms of coalgebras is similar. This completes the
proof of the theorem. �

12.3 Proof of Proposition 2.1.2

The result follows from the fact that any x ∈ B belongs to a finite-dimensional
subcoalgebra Bx ⊂ B and if B was counital then Bx would be also counital.
Let us describe how to construct Bx. Let Δ be the coproduct in B. Then one
can write

Δ(x) =
∑

i

ai ⊗ bi,

where ai (resp. bi) are linearly independent elements of B.
It follows from the coassociativity of Δ that

∑

i

Δ(ai) ⊗ bi =
∑

i

ai ⊗Δ(bi).

Therefore one can find constants cij ∈ k such that

Δ(ai) =
∑

j

aj ⊗ cij ,

and
Δ(bi) =

∑

j

cji ⊗ bj .

Applying Δ ⊗ id to the last equality and using the coassociativity condition
again we get

Δ(cji) =
∑

n

cjn ⊗ cni.

Let Bx be the vector space spanned by x and all elements ai, bi, cij . Then Bx

is the desired subcoalgebra. �
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12.4 Formal Completion Along a Subscheme

Here we present a construction which generalizes the definition of a formal
neighborhood of a k-point of a non-commutative smooth thin scheme.

Let X = Spc(BX) be such a scheme and f : X → Y = Spc(BY ) be a closed
embedding, i.e., the corresponding homomorphism of coalgebras BX → BY

is injective. We start with the category NX of nilpotent extensions of X,
i.e., homomorphisms φ : X → U , where U = Spc(D) is a non-commutative
thin scheme, such that the quotient D/f(BX) (which is always a non-counital
coalgebra) is locally conilpotent. We recall that the local conilpotency means
that for any a ∈ D/f(BX) there exists n ≥ 2 such that Δ(n)(a) = 0, where
Δ(n) is the nth iterated coproduct Δ. If (X,φ1, U1) and (X,φ2, U2) are two
nilpotent extensions of X then a morphism between them is a morphism of
non-commutative thin schemes t : U1 → U2, such that tφ1 = φ2 (in particular,
NX is a subcategory of the naturally-defined category of non-commutative
relative thin schemes).

Let us consider the functor Gf : N op
X → Sets such that G(X,φ,U) is the

set of all morphisms ψ : U → Y such that ψφ = f .

Proposition 12.7 Functor Gf is represented by a triple (X,π, ŶX) where
the non-commutative thin scheme denoted by ŶX is called the formal neigh-
borhood of f(X) in Y (or the completion of Y along f(X)).

Proof. Let Bf ⊂ BX be the counital subcoalgebra which is the pre-
image of the (non-counital) subcoalgebra in BY /f(BX) consisting of locally-
conilpotent elements. Notice that f(BX) ⊂ Bf . It is easy to see that taking
ŶX := Spc(Bf ) we obtain the triple which represents the functor Gf . �

Notice that ŶX → Y is a closed embedding of non-commutative thin
schemes.

Proposition 12.8 If Y is smooth then ŶX is smooth and ŶX " ŶŶX
.

Proof. Follows immediately from the explicit description of the coalgebra
Bf given in the proof of the previous Proposition. �
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On Non-Commutative Analytic Spaces
Over Non-Archimedean Fields

Y. Soibelman

Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA
soibel@math.ksu.edu

Abstract. We discuss examples of non-commutative spaces over non-archimedean
fields. Those include non-commutative and quantum affinoid algebras, quantized K3
surfaces and quantized locally analytic p-adic groups. In the latter case we found
a quantization of the Schneider–Teitelbaum algebra of locally analytic distributions
by using the ideas of representation theory of quantized function algebras.

1 Introduction

1.1

Let A be a unital algebra over the field of real or complex numbers. Follow-
ing [5] one can think of A as of the algebra of smooth functions C∞(XNC)
on some “non-commutative real smooth manifold XNC”. Differential geom-
etry on XNC has been developed by Connes and his followers. By adding
extra structures to A one can define new classes of spaces. For example if
A carries an antilinear involution one can try define a C∗-algebra C(XNC)
of “continuous functions on XNC as a completion of A with respect to the
norm |f | = supπ||π(f)||, where π runs through the set of all topologically
irreducible ∗-representations in Hilbert spaces. By analogy with the commu-
tative case, C(XNC) corresponds to the non-commutative topological space
XNC . Similarly, von Neumann algebras correspond to non-commutative mea-
surable spaces, etc. Main source of new examples for this approach are “bad”
quotients and foliations.

Another class of non-commutative spaces consists of “non-commutative
schemes” and their generalizations. Here we treat A as the algebra of regular
functions on the “non-commutative affine scheme Spec(A)”. The ground field
can be arbitrary (in fact one can speak about rings, not algebras). Naively
defined category of non-commutative affine schemes is the one opposite to
the category of associative unital rings. But then one can ask what is the
“sheaf of regular functions on Spec(A)”. This leads to the question about
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localization in the non-commutative framework which is a complicated task.
An attempt to glue general non-commutative schemes from the affine ones,
leads to a replacement of the naively-defined category of non-commutative
affine schemes by a more complicated category (see e.g. [13]). Main source
of examples for this approach is the representation theory (e.g. theory of
quantum groups).

There is an obvious contradiction between the two points of view dis-
cussed above. Namely, associative algebras over R or C are treated as al-
gebras of functions on different types of non-commutative spaces (smooth
manifolds in non-commutative differential geometry and affine schemes in
non-commutative algebraic geometry). There is no coherent approach to non-
commutative geometry which resolves this contradiction. In other words,
one cannot start with, say, non-commutative smooth algebraic variety over
C, make it into a non-commutative complex manifold and then define a
non-commutative version of a smooth structure, so that it becomes a non-
commutative real smooth manifold. Maybe this is a sign of a general phe-
nomenon: there are many more types of non-commutative spaces than the
commutative ones. Perhaps the traditional terminology (schemes, manifolds,
algebraic spaces, etc.) has to be modified in the non-commutative world. Al-
though non-commutative spaces resist an attempt to classify them, it is still
interesting to study non-commutative analogues of “conventional” classes of
commutative spaces. Many examples arise if one considers algebras which are
close to commutative (e.g. deformation quantization, quantum groups), or al-
gebras which are very far from commutative ones (like free algebras). In a
sense these are two “extreme” cases and for some reason the corresponding
non-commutative geometry is richer than the “generic” one.

1.2

In this chapter we discuss non-commutative analytic spaces over non-
archimedean fields. The list of “natural” examples is non-empty (see e.g. [16]).
Analytic non-commutative tori (or elliptic curves) from [16] are different from
C∞ non-commutative tori of Connes and Rieffel. Although a non-commutative
elliptic curve over C (or over a non-archimedean valuation field, see [16]) ap-
pears as a “bad” quotient of an analytic space, it carries more structures than
the corresponding “smooth” bad quotient which is an object of Connes the-
ory. Non-commutative deformations of a non-archimedean K3 surface were
mentioned in [8] as examples of a “quantization”, which is not formal with
respect to the deformation parameter. It seems plausible that a natural class
of “quantum” non-archimedean analytic spaces can be derived from cluster
ensembles (see [6]).

Present chapter is devoted to examples of non-commutative spaces which
can be called non-commutative rigid analytic spaces. General theory is far
from being developed. We hope to discuss some of its aspects elsewhere (see
[14]).
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Almost all examples of non-commutative analytic spaces considered in the
present chapter are treated from the point of view of the approach to rigid
analytic geometry offered in [2, 3]. The notion of spectrum of a commutative
Banach ring plays a key role in the approach of Berkovich. Recall that the
spectrum M(A) introduced in [2] has two equivalent descriptions:

(a) the set of multiplicative continuous seminorms on a unital Banach
ring A;

(b) the set of equivalence classes of continuous representations of A in 1-
dimensional Banach spaces over complete Banach fields (i.e. continuous char-
acters).

The space M(A) carries a natural topology so that it becomes a (non-
empty) compact Hausdorff space. There is a canonical map π: M(A) →
Spec(A) which assigns to a multiplicative seminorm its kernel, a prime ideal.
The spectrum M(A) is a natural generalization of the Gelfand spectrum of a
unital commutative C∗-algebra.

Berkovich’s definition is very general and does not require A to be an
affinoid algebra (i.e. an admissible quotient of the algebra of analytic functions
on a non-archimedean polydisc). In the affinoid case one can make M(A) into
a ringed space (affinoid space). General analytic spaces are glued from affinoid
ones similarly to the gluing of general schemes from affine schemes. Analytic
spaces in the sense of Berkovich have better local properties than classical
rigid analytic spaces (e.g. they are locally arcwise connected, see [4], while in
the classical rigid analytic geometry the topology is totally disconnected).

Affinoid spaces play the same role of “building blocks” in non-archimedean
analytic geometry as affine schemes play in the algebraic geometry. For ex-
ample, localization of a finite Banach A-module M to an affinoid subset
V ⊂ M(A) is achieved by the topological tensoring of M with an affinoid
algebra AV , which is the localization of A on V (this localization is not an
essentially surjective functor, differently from the case of algebraic geometry).
In order to follow this approach one needs a large supply of “good” multiplica-
tive subsets of A. If A is commutative this is indeed the case. It is natural to
ask what has to be changed in the non-commutative case.

1.3

If A is a non-commutative unital Banach ring (or non-commutative affinoid
algebra, whatever this means) then there might be very few “good” multi-
plicatively closed subsets of A. Consequently, the supply of affinoid sets can
be insufficient to produce a rich theory of non-commutative analytic spaces.
This problem is already known in non-commutative algebraic geometry and
one can try to look for a possible solution there. One way to resolve the dif-
ficulty was suggested in [14]. Namely, instead of localizing rings, one should
localize categories of modules over rings, e.g. using the notion of spectrum
of an abelian category introduced in [14]. Spectrum is a topological space
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equipped with Zariski-type topology. For an associative unital ring A the cat-
egory of left modules A−mod gives rise to a sheaf of local categories on the
spectrum of A − mod. If A is commutative, then the spectrum of A − mod
coincides with the usual spectrum Spec(A). In the commutative case the fibre
of the sheaf of categories over p ∈ Spec(A) is the category of modules over
a local ring Ap which is the localization of A at p. In the non-commutative
case the fibre is not a category of modules over a ring. Nevertheless one can
glue general non-commutative spaces from “affine” ones and call them non-
commutative schemes. Thus non-commutative schemes are topological spaces
equipped with sheaves of local categories (see [14] for details).

There are more general classes of non-commutative spaces than non-
commutative schemes (see e.g. [10]). In particular, there might be no underly-
ing topological space (i.e. no “spectrum”). Then one axiomatizes the notions
of covering and descent. Main idea is the following. If X = ∪i∈IUi is a “good”
covering of a scheme, then the algebra of functions C := O(%i,j∈I(Ui ∩ Uj)
is a coalgebra in the monoidal category of A − A-bimodules, where A :=
O(%i∈IUi). In order to have an equivalence of the category of descent data
with the category of quasi-coherent sheaves on X one deals with the flat
topology, which means that C is a (right) flat A-module. In this approach the
category of non-commutative spaces is defined as a localization of the cate-
gory of coverings with respect to a class of morphisms called refinements of
coverings. This approach can be generalized to non-commutative case ([10]).
One problem mentioned in [10] is the absence of a good definition of mor-
phism of non-commutative spaces defined by means of coverings. Then one
can use another approach based on the same idea, which deals with derived
categories of quasi-coherent sheaves rather than with the abelian categories
of quasi-coherent sheaves. Perhaps this approach can be generalized in the
framework of non-commutative analytic spaces discussed in this chapter.

1.4

Let us briefly discuss some difficulties one meets trying to construct a theory
of non-commutative analytic spaces (some of them are technical but other are
conceptual).

(1) It is typical in non-commutative geometry to look for a point-indepen-
dent (e.g. categorical) description of an object or a structure in the commu-
tative case and then take it as a definition in the non-commutative case. For
example, an affine morphism of schemes can be characterized by the property
that the direct image functor is faithful and exact. This is taken as a defi-
nition (see [13], VII.1.4) of an affine morphism of non-commutative schemes.
Another example is the algebra of regular functions on a quantized simple
group which is defined via Peter–Weyl theorem (i.e. it is defined as the algebra
of matrix elements of finite-dimensional representations of the quantized en-
veloping algebra, see [11]). Surprisingly many natural “categorical” questions
do not have satisfactory (from the non-commutative point of view) answers
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in analytic case. For example: how to characterize categorically an embedding
V → X = M(A), where V is an affinoid domain?

(2) In the theory of analytic spaces all rings are topological (e.g. Banach).
Topology should be involved already in the definition of the non-commutative
version of Berkovich spectrum M(A) as well as in the localization procedure
(question: having a category of coherent sheaves on the Berkovich spectrum
M(A) of an affinoid algebra A how to describe categorically its stalk at a
point x ∈ M(A)?).

(3) It is not clear what is a non-commutative analogue of the notion of
affinoid algebra. In the commutative case a typical example of an affinoid al-
gebra is the Tate algebra, i.e. the completion Tn of the polynomial algebra
K[x1, ..., xn] with respect to the Gauss norm ||

∑
l∈Z+

alx
l|| = supl|al|, where

K is a valuation field. It is important (at least at the level of proofs) that Tn

is noetherian. If we relax the condition that variables xi, 1 ≤ i ≤ n commute,
then the noetherian property can fail. This is true, in particular, if one starts
with the polynomial algebra K〈x1, ..., xn〉 of free variables, equipped with the
same Gauss norm as above (it is easy to see that the norm is still multi-
plicative). In “classical” rigid analytic geometry many proofs are based on
the properties of Tn (e.g. all maximal ideals have finite codimension, Weier-
strass division theorem, Noether normalization theorem, etc.). There is no
“universal” replacement of Tn in non-commutative world which enjoys the
same properties. On the other hand, there are some candidates which are
good for particular classes of examples. We discuss them in the main body of
the paper.

1.5

About the content of the paper. We start with elementary considerations,
e.g. a non-commutative analog of the Berkovich spectrum MNC(A) (here A
is a unital Banach ring). Our definition is similar to the algebro-geometric
definition of the spectrum Spec(A) := Spec(A − mod) from [13]. Instead of
the category of A-modules in [13] we consider here the category of continuous
A-modules complete with respect to a seminorm. We prove that MNC(A) is
non-empty. There is a natural map π : MNC(A) → Spec(A). Then we equip
MNC(A) with the natural Hausdorff topology. The set of bounded multiplica-
tive seminorms M(A) is the usual Berkovich spectrum. Even if A is com-
mutative, the space MNC(A) is larger than Berkovich spectrum M(A). This
phenomenon can be illustrated in the case of non-commutative algebraic ge-
ometry. Instead of considering k-points of a commutative ring A, where k is a
field, one can consider matrix points of A, i.e. homomorphisms A → Matn(k).
Informally speaking, such homomorphisms correspond to morphisms of a non-
commutative scheme Spec(Matn(k)) into Spec(A). Only the case n = 1 is
visible in the “conventional” algebraic geometry. Returning to unital Banach
algebras we observe that M(A) ⊂ MNC(A) regardless of commutativity of A.
In this chapter we are going to use M(A) only
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Most of the chapter is devoted to examples, discussed in Sects. 3–7 be-
low. We start with the non-commutative polydiscs and quantum tori. A non-
commutative analytic K3 surface is the most non-trivial example considered
in the paper. It can be also called quantum K3 surface, because it is a flat
analytic deformation of the non-archimedean analytic K3 surface constructed
in [8]. In the construction we follow the approach of [8], where the “commu-
tative” analytic K3 surface was built by gluing it from “flat” pieces, each of
which is a non-archimedean analytic analogue of a Lagrangian torus fibration
in symplectic geometry. We recall the construction in Sect. 7.1. Main idea
is based on the relationship between non-archimedean analytic Calabi–Yau
manifolds and real manifolds with integral affine structure discussed in [8, 9].
Roughly speaking, to such a Calabi–Yau manifold X we associate a PL man-
ifold Sk(X), its skeleton. There is a continuous map π : X → Sk(X) such
that the generic fibre is a non-archimedean analytic torus. Moreover, there
is an embedding of Sk(X) into X, so that π becomes a retraction. For the
elliptically fibered K3 surface the skeleton Sk(X) is a two-dimensional sphere
S2. It has an integral affine structure which is non-singular outside of the set
of 24 points. It is analogous to the integral affine structure on the base of a
Lagrangian torus fibration in symplectic geometry (Liouville theorem). Fibres
of π are Stein spaces. Hence in order to construct the sheaf OX of analytic
functions on X it suffices to construct π∗(OX).

In fact almost all examples considered in this chapter should be called
quantum non-commutative analytic spaces. They are based on the version of
Tate algebra in which the commutativity of variables zizj = zjzi is replaced
by the q-commutativity zizj = qzjzi, i < j, q ∈ K×, |q| = 1. In particu-
lar our non-commutative analytic K3 surface is defined as a ringed space,
with the underlying topological space being an ordinary K3 surface equipped
with the natural Grothendieck topology introduced in [4] and the sheaf of
non-commutative algebras which is locally isomorphic to a quotient of the
above-mentioned “quantum” Tate algebra. The construction of a quantum
K3 surface uses a non-commutative analog of the map π. In other words,
the skeleton Sk(X) survives under the deformation procedure. We will point
out a more general phenomenon, which does not exist in “formal” defor-
mation quantization. Namely, as the deformation parameter q gets closer to
1 we recover more and more of the Berkovich spectrum of the undeformed
algebra.

1.6

The theory of non-commutative non-archimedean analytic spaces should have
applications to mirror symmetry in the spirit of [8, 9]. More precisely, it looks
plausible that certain deformation of the Fukaya category of a maximally
degenerate (see [8, 9]) hyperkahler manifold can be realized as the derived
category of coherent sheaves on the non-commutative deformation of the dual
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Calabi–Yau manifold (which is basically the same hyperkahler manifold). This
remark was one of the motivations of this chapter. Another motivation is the
theory of p-adic quantum groups. We will discuss it elsewhere.

2 Non-Commutative Berkovich Spectrum

2.1 Preliminaries

We refer to [2], Chap. 1 for the terminology of seminormed groups, etc. Here
we recall few terms for convenience of the reader.

Let A be an associative unital Banach ring. Then, by definition, A carries
a norm | • |A and moreover, A is complete with respect to this norm. The
norm is assumed to be submultiplicative, i.e. |ab|A ≤ |a|A|b|A, a, b ∈ A and
unital, i.e. |1|A = 1. We call the norm non-archimedean if, instead of the
usual inequality |a + b|A ≤ |a|A + |b|A, a, b ∈ A, we have a stronger one
|a + b|A ≤ max{|a|A, |b|A}. A seminormed module over A is (cf. with [2]) a
left unital (i.e. 1 acts as idM ) A-module M which carries a seminorm | • | such
that |am| ≤ C|a|A|m| for some C > 0 and all a ∈ A,m ∈ M . Seminormed
A-modules form a category A − modc, such that a morphism f : M → N is
a homomorphism of A-modules satisfying the condition |f(m)| ≤ const |m|
(i.e. f is bounded). Clearly the kernel Ker(f) is closed with respect to the
topology defined by the seminorm on M . A morphism f : M → N is called
admissible if the quotient seminorm on Im(f) " M/Ker(f) is equivalent to
the one induced from N . We remark that the category A−modc is not abelian
in general. Following [2] we call valuation field a commutative Banach field K
whose norm is multiplicative, i.e. |ab| = |a||b|. If the norm is non-archimedean,
we will cal K a non-archimedean valuation field. In this case one can introduce
a valuation map val : K× → R ∪ +∞, such that val(x) = −log|x|.

2.2 Spectrum of a Banach Ring

Let us introduce a partial order on the objects of A − modc. We say that
N ≥c M if there exists a closed admissible embedding i : L → ⊕I−finiteN
and an admissible epimorphism pr : L → M . We will denote by N ≥ M a
similar partial order on the category A−mod of left A-modules (no admissi-
bility condition is imposed). We will denote by =c (resp. = for A−mod) the
equivalence relation generated by the above partial order.

Let us call an object of A − modc (resp. A − mod) minimal if it satisfies
the following conditions (cf. [13]):

(1) if i : N → M is a closed admissible embedding (resp. any embedding
in the case of A−mod) then N ≥c M (resp. N ≥ M);

(2) there is an element m ∈ M such that |m| �= 0 (resp. m �= 0 for A−mod).
We recall (see [13]) that the spectrum Spec(A) := Spec(A−mod) consists

of equivalence classes (w.r.t. =) of minimal objects of A − mod. It is known
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that Spec(A) is non-empty and contains classes of A-modules A/m, where m
is a left maximal ideal of A. Moreover, Spec(A) can be identified with the
so-called left spectrum Specl(A), which can be also described in terms of a
certain subset of the set of left ideals of A (for commutative A it is the whole
set of prime ideals).

Let A−modb be a full subcategory of A−modc consisting of A-modules
which are complete with respect to their seminorms (we call them Banach
modules for short).

Definition 2.1 The non-commutative analytic spectrum MNC(A) consists
of classes of equivalence (w.r.t. to =c) of minimal (i.e. satisfying (1) and (2))
objects M of A−modb which satisfy also the following property:

(3) if m0 ∈ M is such that |m0| �= 0 then the left module Am0 is minimal,
i.e. defines a point of Spec(A) (equivalently, this means that p := Ann(m0) ∈
Specl(A)) and this point does not depend on a choice of m0.

The following easy fact implies that MNC(A) �= ∅.

Proposition 2.2 Every (proper) left maximal ideal m ⊂ A is closed.

Proof. We want to prove that the closure m coincides with m. The ideal m
contains m. Since m is maximal, then either m = m or m = A. Assume the
latter. Then there exists a sequence xn → 1, n → +∞, xn ∈ m. Choose n so
large that |1 − xn|A < 1/2. Then xn = 1 + (xn − 1) := 1 + yn is invertible in
A, since (1 + yn)−1 =

∑
l≥0(−1)lyl

n converges. Hence m = A. Contradiction.
�

Corollary 2.3 MNC(A) �= ∅

Proof. Let m be a left maximal ideal in A (it does exists because of the
standard arguments which use Zorn lemma). It is closed by previous Propo-
sition. Then M := A/m is a cyclic Banach A-module with respect to the
quotient norm. We claim that it contains no proper closed submodules. In-
deed, let N ⊂ M be a proper closed submodule. We may assume it contains
an element n0 such that annihilator Ann(n0) contains m as a proper subset.
Since m is maximal we conclude that Ann(n0) = A. But this cannot be true
since 1 ∈ A acts without kernel on A/m, hence 1 /∈ Ann(n0). This contradic-
tion shows that M contains no proper closed submodules. In order to finish
the proof we recall that simple A-module A/m defines a point of Spec(A).
Hence the conditions (1)–(3) above are satisfied. �

Abusing terminology we will often say that an object belongs to the spec-
trum (rather than saying that its equivalence class belongs to the spectrum).

Proposition 2.4 If M ∈ A − modb belongs to MNC(A) then its seminorm
is, in fact, a Banach norm.

Proof. Let N = {m ∈ M ||m| = 0}. Clearly N is a closed submodule. Let L
be a closed submodule of the finite sum of copies of N , such that there exists
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an admissible epimorphism pr : L → M . Then the submodule L must carry
trivial induced seminorm and, moreover, admissibility of the epimorphism
pr : L → M implies that the seminorm on M is trivial. This contradicts to
(2). Hence N = 0. �

Remark 2.5 (a) By condition (3) we have a map of sets π : MNC(A) →
Spec(A).

(b) If A is commutative then any bounded multiplicative seminorm on A
defines a prime ideal p (the kernel of seminorm). Moreover, A/p is a Banach
A-module, which belongs to MNC(A). Hence Berkovich spectrum M(A) (see
[2]) is a subset of MNC(A). Thus MNC(A) can be also called non-commutative
Berkovich spectrum.

2.3 Topology on MNC(A)

If a Banach A-module M belongs to MNC(A) then it is equivalent (with
respect to =c) to the closure of any cyclic submodule M0 = Am0. Then for a
fixed a ∈ A we have a function φa : (M, | • |) 
→ |am0|, which can be thought
of as a real-valued function on MNC(A).

Definition 2.6 The topology on MNC(A) is taken to be the weakest one for
which all functions φa, a ∈ A are continuous.

Proposition 2.7 The above topology makes MNC(A) into a Hausdorff topo-
logical space.

Proof. Let us take two different points of the non-commutative analytic
spectrum MNC(A) defined by cyclic seminormed modules (M0, | • |) and
(M ′

0, | • |′). If M0 is not equivalent to M ′
0 with respect to = (i.e. in A−mod),

then there are exist two different closed left ideals p, p′ such that M0 " A/p
and M ′

0 " A/p′ (again, this is an isomorphism of A-modules only. Banach
norms are not induced from A). Then there is an element a ∈ A which be-
longs, to,say, p and does not belong to p′ (if p ⊂ p′ we interchange p and
p′). Hence the function φa is equal to zero on the closure of (M0, | • |) and
φa((M ′

0, | • |′) = ca > 0. Then open sets U0 = {x ∈ MNC(A)|φa(x) < ca/2}
and U ′

0 = {x ∈ MNC(A)|3ca/4 < φa(x) < ca} do not intersect and separate
two given points of the analytic spectrum.

Suppose M = M0 = M ′
0 = Am0. Since the corresponding points of

Spec(A) coincide, we have the same cyclic A-module which carries two dif-
ferent norms | • | and | • |′. Let am0 = m ∈ M be an element such that
|m| �= |m|′. Then the function φa takes different values at the corresponding
points of MNC(A) (which are completions of M with respect to the above
norms) and we can define separating open subsets as before. This concludes
the proof. �
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2.4 Relation to Multiplicative Seminorms

If x: A → R+ is a multiplicative bounded seminorm on A (bounded means
x(a) ≤ |a|A for all a ∈ A) then Ker x is a closed two-sided ideal in A. If A is
non-commutative, it can contain very few two-sided ideals. At the same time,
a bounded multiplicative seminorm x gives rise to a point of MNC(A) such
that the corresponding Banach A-module is A/Ker x equipped with the left
action of A.

There exists a class of submultiplicative bounded seminorms on A which
is contained in M(A), if A is commutative. More precisely, let us consider the
set P (A) of all submultiplicative bounded seminorms on A. By definition, an
element of P (A) is a seminorm such that |ab| ≤ |a||b|, |1| = 1, |a| ≤ C|a|A for
all a, b ∈ A and some C > 0 (C depends on the seminorm). The set P (A)
carries natural partial order: | • |1 ≤ | • |2 if |a|1 ≤ |a|2 for all a ∈ A. Let us
call minimal seminorm a minimal element of P (A) with respect to this partial
order and denote by Pmin(A) the subset of minimal seminorms. The latter set
is non-empty by Zorn lemma. Let us recall the following classical result (see
e.g. [2]).

Proposition 2.8 If A is commutative then Pmin(A) ⊂ M(A), i.e. any mini-
mal seminorm is multiplicative.

Since there exist multiplicative bounded seminorms which are not minimal
(take, e.g. the trivial seminorm on the ring of integers Z equipped with the
usual absolute value Banach norm) it is not reasonable to define M(A) in the
non-commutative case as a set of minimal bounded seminorms. On the other
hand one can prove the following result.

Proposition 2.9 If A is left noetherian as a ring then a minimal bounded
seminorm defines a point of MNC(A).

Proof. Let p be the kernel of a minimal seminorm v. Then p is a 2-sided
closed ideal. The quotient B = A/p is a Banach algebra with respect to
the induced norm. It is topologically simple, i.e. does not contain non-trivial
closed two-sided ideals. Indeed, let r be a such an ideal. Then B/r is a Banach
algebra with the norm induced from B. The pullback of this norm to A gives
rise to a bounded seminorm on A, which is smaller than v, since it is equal
to zero on a closed two-sided ideal which contains p = Ker v. The remaining
proof that A/p ∈ MNC(A) is similar to the one from [13]. Recall that it was
proven in [13] that if n is a two-sided ideal in a noetherian ring R such that
R/n contains no 2-sided ideals then A/n ∈ Spec(A−mod). �

We will denote by M(A) the subset of MNC(A) consisting of bounded
multiplicative seminorms. It carries the induced topology, which coincides
for a commutative A with the topology introduced in [13]. We will call the
corresponding topological space Berkovich spectrum of A.

Returning to the beginning of this section we observe that the set P (A) of
submultiplicative bounded seminorms contains MNC(A). Indeed if v ∈ P (A)
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then we have a left Banach A-module Mv, which is the completion of A/Ker v
with respect to the norm induced by v. Thus Mv is a cyclic Banach A-module.
A submultiplicative bounded seminorm which defines a point of the analytic
spectrum can be characterized by the following property: v ∈ P (A) belongs
to MNC(A) iff A/Ker v ∈ Spec(A−mod) (equivalently, if Ker v ∈ Specl(A)).

2.5 Remark on Representations in a Banach Vector Space

Berkovich spectrum of a commutative unital Banach ring A can be under-
stood as a set of equivalence classes of one-dimensional representations of A
in Banach vector spaces over valuation fields. One can try to do a similar thing
in the non-commutative case based on the following simple considerations.

Let A be as before, Z ⊂ A its center. Clearly it is a commutative unital
Banach subring of A. It follows from [2], 1.2.5(ii) that there exists a bounded
seminorm on A such that its restriction to Z is multiplicative (i.e. |ab| = |a||b|).
Any such a seminorm x ∈ M(Z) gives rise to a valuation field Zx, which
is the completion (with respect to the induced multiplicative norm) of the
quotient field of the domain Z/Ker x. Then the completed tensor product
Ax := Zx⊗̂ZA is a Banach Zx-algebra. For any valuation field F and a Banach
F -vector space V we will denote by BF (V ) the Banach algebra of all bounded
operators on V . Clearly the left action of Ax on itself is continuous. Thus we
have a homomorphism of Banach algebras Ax → BZx

(Ax). Combining this
homomorphism with the homomorphism A → Ax, a 
→ 1 ⊗ a we see that the
following result holds.

Proposition 2.10 For any associative unital Banach ring A there exists a
valuation field F , a Banach F -vector space V and a representation A →
BF (V ) of A in the algebra of bounded linear operators in V .

3 Non-Commutative Affinoid Algebras

Let K be a non-archimedean valuation field, r = (r1, ..., rn), where ri >
0, 1 ≤ i ≤ n. In the “commutative” analytic geometry an affinoid algebra A
is defined as an admissible quotient of the unital Banach algebra K{T}r of
formal series

∑
l∈Zn

+
alT

l, such that max |al|rl → 0, l = (l1, ..., ln). The latter
algebra is the completion of the algebra of polynomials K[T ] := K[T1, ..., Tn]
with respect to the norm |

∑
l alT

l|r = max|al|rl. In the non-commutative
case we start with the algebra K〈T 〉 := K〈T1, ..., Tn〉 of polynomials in n
free variables and consider its completion K〈〈T 〉〉r with respect to the norm
|
∑

λ∈P (Zn
+) aλT

λ| = maxλ|aλ|rλ. Here P (Zn
+) is the set of finite paths in Zn

+

starting at the origin and Tλ = Tλ1
1 Tλ2

2 .... for the path which moves λ1 steps
in the direction (1, 0, 0, ...) then λ2 steps in the direction (0, 1, 0, 0...) and so
on (repetitions are allowed, so we can have a monomial like Tλ1

1 Tλ2
2 Tλ3

1 ). We
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say that a Banach unital algebra A is non-commutative affinoid algebra if
there is an admissible surjective homomorphism K〈〈T 〉〉r → A. In particular,
K{T}r is such an algebra and hence all commutative affinoid algebras are such
algebras. We will restrict ourselves to the class of noetherian non-commutative
affinoid algebras, i.e. those which are noetherian as left rings. All classical
affinoid algebras belong to this class.

For noetherian affinoid algebras one can prove the following result (the
proof is similar to the proof of Prop. 2.1.9 from [2], see also [15]).

Proposition 3.1 Let A be a noetherian non-commutative affinoid algebra.
Then the category A − modf of (left) finite A-modules is equivalent to the
category A−modfb of (left) finite Banach A-modules.

An important class of noetherian affinoid algebras consists of quantum
affinoid algebras. By definition they are admissible quotients of algebras
K{T1, ..., Tn}q,r. The latter consists of formal power series f =

∑
l∈Zn

+
alT

l

of q-commuting variables (i.e. TiTj = qTjTi, i < j and q ∈ K×, |q| = 1)
such that |al|rl → 0. Here T l = T l1

1 ...T ln
n (the order is important now). It

is easy to see that for any r = (r1, ..., rn) such that all ri > 0 the func-
tion f 
→ |f |r := maxl|al|rl defines a multiplicative norm on the polynomial
algebra K[T1, ..., Tn]q,r in q-commuting variables Ti, 1 ≤ i ≤ n. Banach alge-
bra K{T1, ..., Tn}q,r is the completion of the latter with respect to the norm
f 
→ |f |r. Similarly, let Q = ((qij)) be an n × n matrix with entries from K
such that qijqji = 1, |qij | = 1 for all i, j. Then we define the quantum affinoid
algebra K{T1, ..., Tn}Q,r in the same way as above, starting with polynomials
in variables Ti, 1 ≤ i ≤ n such that TiTj = qijTjTi. One can think of this
Banach algebra as of the quotient of K〈〈Ti, tij〉〉r,1ij

, where 1 ≤ i, j ≤ n and
1ij is the unit n×n matrix, by the two-sided ideal generated by the relations

tijtji = 1, TiTj = tijTjTi, tija = atij ,

for all indices i, j and all a ∈ K〈〈Ti, tij〉〉r,1ij
. In other words, we treat qij

as variables which belong to the center of our algebra and have the norms
equal to 1.

4 Non-Commutative Analytic Affine Spaces

Let k be a commutative unital Banach ring. Similarly to the previous
section we start with the algebra k〈〈x1, ..., xn〉〉 of formal series in free
variables T1, ..., Tn. Then for each r = (r1, ..., rn) we define a subspace
k〈〈T1, ..., Tn〉〉r consisting of series f =

∑
i1,...,im

ai1,...,im
Ti1 ...Tim

such that∑
i1,...,im

|ai1,...,im
|ri1 ...rim

< +∞. Here the summation is taken over all
sequences (i1, ..., im),m ≥ 0 and | • | denotes the norm in k. In the non-
archimedean case the convergency condition is replaced by the following one:
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max |ai1,...,im
|ri1 ...rim

< +∞. Clearly each k〈〈x1, ..., xn〉〉r is a Banach alge-
bra (called the algebra of analytic functions on a non-commutative k-polydisc
ENC(0, r), cf. [2], Sect. 1.5). We would like to define a non-commutative n-
dimensional analytic k-affine space An

NC as the coproduct ∪rENC(0, r). By
definition the algebra of analytic functions on the quantum affine space is
given by the above series such that max |ai1,...,im

|ri1 ...rim
< +∞ for all

r = (r1, ..., rn). In other words, analytic functions are given by the series
which are convergent in all non-commutative polydics with centers in the
origin.

The algebra of analytic functions on the non-archimedean quantum closed
polydisc Eq(0, r) is, by definition, k{T1, ..., Tn}q,r. The algebra of analytic
functions on non-archimedean quantum affine space AN

q consists of the series
f in q-commuting variables T1, ..., Tn, such that for all r the norm |f |r is finite.
Equivalently, it is the coproduct of quantum closed polydiscs Eq(0, r). There
is an obvious generalization of this example to the case when q is replaced by
a matrix Q as in the previous section. We will keep the terminology for the
matrix case as well.

5 Quantum Analytic Tori

Let K be a non-archimedean valuation field, L a free abelian group of finite
rank d, ϕ : L × L → Z is a skew-symmetric bilinear form, q ∈ K∗ satisfies
the condition |q| = 1. Then |qϕ(λ,μ)| = 1 for any λ, μ ∈ L. We denote by
Aq(T (L,ϕ)) the algebra of regular functions on the quantum torus Tq(L,ϕ).
By definition, it is a K-algebra with generators e(λ), λ ∈ L, subject to the
relation

e(λ)e(μ) = qϕ(λ,μ)e(λ + μ).

Definition 5.1 The space Oq(T (L,ϕ, (1, ..., 1))) of analytic functions on the
quantum torus of multiradius (1, 1, ..., 1) ∈ Zd

+ consists of series
∑

λ∈L a(λ)
e(λ),a(λ) ∈ K such that |a(λ)| → 0 as |λ| → ∞ (here |(λ1, ..., λd)| =

∑
i |λi|).

It is easy to check (see [16]) the following result.

Lemma 5.2 Analytic functions Oq(T (L,ϕ, (1, ..., 1))) form a Banach K-
algebra. Moreover, it is a noetherian quantum affinoid algebra.

This example admits the following generalization. Let us fix a basis
e1, ..., en of L and positive numbers r1, ..., rn. We define rλ = rλ1

1 ...rλn
n for

any λ =
∑

1≤i≤n λiei ∈ L. Then the algebra Oq(T (L,ϕ, r)) of analytic func-
tions on the quantum torus of multiradius r = (r1, ..., rn) is defined by same
series as in the above definition, with the only change that |a(λ)|rλ → 0 as
|λ| → ∞. We are going to denote the corresponding non-commutative an-
alytic space by T an

q (L,ϕ, r). It is a quantum affinoid space. The coproduct
T an

q (L,ϕ) = ∪rT
an
q (L,ϕ, r) is called the quantum analytic torus. The algebra
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of analytic functions Oq(T (L,ϕ)) on it consists, by definition, of the above
series such that for all r = (r1, ..., rd) one has: |a(λ)|rλ → 0 as |λ| → ∞. To be
consistent with the notation of the previous subsection we will often denote
the dual to ei by Ti.

5.1 Berkovich Spectra of Quantum Polydisc and Analytic Torus

Assume for simplicity that the pair (L,ϕ) defines a simply laced lattice of rank
d, i.e. for some basis (ei)1≤i≤d of L one has ϕ(ei, ej) = 1, i < j. In the coordi-
nate notation we have TiTj = qTjTi, i < j, |q| = 1. Any r = (r1, ..., rd) ∈ Rd

>0

gives rise to a point νr ∈ M(Oq(T (L,ϕ))) such that νr(f) = maxλ∈L|a(λ)|rλ.
In this way we obtain a (continuous) embedding of Rd

>0 into Berkovich spec-
trum of quantum torus. This is an example of a more general phenomenon. In
fact Rd

>0 can be identified with the so-called skeleton S((Gan
m )d) (see [2, 4])

of the d-dimensional (commutative) analytic torus (Gan
m )d. Skeleta can be de-

fined for more general analytic spaces (see [4]). For example, the skeleton of
the d-dimensional Drinfeld upper-half space Ωd

K is the Bruhat–Tits building
of PGL(d,K). There is also a different notion of skeleton, which makes sense
for so-called maximally degenerate Calabi–Yau manifolds (see [8], Sect. 6.6
for the details). In any case a skeleton is a PL-space (polytope) naturally
equipped with the sheaf of affine functions. One can expect that the notion
of skeleton (either in the sense of Berkovich or in the sense of [8]) admits a
generalization to the case of quantum analytic spaces modeled by quantum
affinoid algebras.

We have constructed above an embedding of S((Gan
m )d) into M(Oq(T

(L,ϕ)). If q = 1 then there is a retraction (Gan
m )d → S((Gan

m )d). The pair
((Gan

m )d, S((Gan
m )d)) is an example of analytic torus fibration which plays an

important role in mirror symmetry (see [8]). One can expect that this picture
admits a quantum analogue.

The skeleton of the analytic quantum torus survives in q-deformations as
long as |q| = 1. Another example of this sort is a quantum K3 surface consid-
ered in Sect. 7. One can expect that the skeleton survives under q-deformations
with |q| = 1 for all analytic spaces which have a skeleton. Then it is natural to
ask whether the Berkovich spectrum of a quantum non-archimedean analytic
space contains more than just the skeleton. Surprisingly, as q gets sufficiently
close to 1, the answer is positive. Let ρ = (ρ1, ..., ρd), r = (r1, ..., rd) ∈ Rd

≥0

and a = (a1, ..., ad) ∈ Kd. We assume that |1 − q| < 1 and |a| ≤ |ρ| < r
(i.e. ai ≤ ρi, < ri, 1 ≤ i ≤ d). Let f =

∑
n∈Zd

+
cnT

n be a polynomial in q-
commuting variables. Set ti = Ti − ai, 1 ≤ i ≤ d. Then f can be written as
f =

∑
n∈Zd

+
bnt

n (although ti are no longer q-commute).

Proposition 5.3 The seminorm νa,ρ(f) := maxn|bn|ρn defines a point of the
Berkovich spectrum of the quantum closed polydisc disc Eq(0, r).

Proof. It suffices to show that νa,r(fg) = νa,r(f)νa,r(g) for any two poly-
nomials f, g ∈ K[T1, ..., Td]q.
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Let us introduce new variables ti by the formulas Ti − ai = ti, 1 ≤
i ≤ d. Clearly νa,ρ(ti) = ρi, 1 ≤ i ≤ d. By definition titj = qtjti +
(q − 1)(aitj + ajti) + (q − 1)aiaj . Therefore, for any multi-indices α, β one
has tαtβ = qϕ(α,β)tβtα + D, where νa,ρ(D) < ρ|α|+|β|. Here t(α1,...,αd) :=
tα1
1 ...tαd

d . Note that νa,ρ(titj) = νa,ρ(tjti) = νa,ρ(ti)νa,ρ(tj). Any polyno-
mial f =

∑
n∈Zd

+
cnT

n ∈ K[T1, ..., Td]q can be written as a finite sum
f =

∑
n∈Zd

+
cnt

n + B where νa,ρ(B) < νa,ρ(
∑

n∈Zd
+
ant

n). We see that
νa,ρ(f) = max |cn|ρn. It follows that νa,ρ is multiplicative. This concludes
the proof. �

We will say that the seminorm νa,ρ corresponds to the closed quantum
polydisc Eq(a, ρ) ⊂ Eq(0, r). Since the quantum affine space is the union of
quantum closed discs (and hence the Berkovich spectrum of the former is by
definition the union of the Berkovich spectra of the latter) we see that the
Berkovich spectrum of Ad

q contains all points νa,r(f) with |a| < r.

Proposition 5.4 Previous Proposition holds for the quantum torus
Tq(L,ϕ, r).

Proof. The proof is basically the same as in the case q = 1. Let f =∑
n∈Zd cnT

n be an analytic function on T an
q (L,ϕ, r). In the notation of the

above proof we can rewrite f as f =
∑

n∈Zd cn(t + a)n, where (ti + ai)−1 :=
t−1
i

∑
m≥0(−1)mam

i t−m
i . Therefore f =

∑
m∈Zd

+
dmtm +

∑
m∈Zd

−
dmtm. Sup-

pose we know that |dm|ρm → 0 as |m| → +∞. Then similarly to the
proof of the previous proposition one sees that νa,ρ(f) := maxm|dm|ρm

is a multiplicative seminorm. Let us estimate |dm|ρm. For m ∈ Zd
+ we

have: dm =
∑

l∈Zd
+
b
(m)
l cl+mal, where |b(m)

l | ≤ 1. Since |a| ≤ ρ we have

|dm| ≤ maxl∈Zd
+
|cl+m|ρl ≤ maxl∈Zd

+
|cl+m|ρl+m/ρm ≤ pmρ−m, where pm → 0

as |m| → ∞. Similar estimate holds for m ∈ Zd
−. Therefore νa,ρ(f) is a

multiplicative seminorm. Berkovich spectrum of the quantum torus is, by def-
inition,the union of the Berkovich spectra of quantum analytic tori Tq(L,ϕ, r)
of all multiradii r. Thus we see that the pair (a, ρ) as above defines a point of
Berkovich spectrum of the quantum analytic torus. �

Remark 5.5 It is natural to ask whether any point of the Berkovich spec-
trum of the “commutative” analytic space (Gan

m )d appears as a point of the
Berkovich spectrum of the quantum analytic torus, as long as we choose q
sufficiently close to 1. More generally, let us imagine that we have two quan-
tum affinoid algebras A and A′ which are admissible quotients of the algebras
K{T1, ..., Tn}Q,r and K{T1, ..., Tm}Q′,r respectively, where Q and Q′ are ma-
trices as in Sect. 3. One can ask the following question: for any closed subset
V ⊂ M(A) is there ε > 0 such that if ||Q−Q′|| < ε then there is a closed sub-
set V ′ ⊂ M(A′) homeomorphic to V ? Here the norm of the matrix S = ((sij))
is defined as maxi,j |sij |. If the answer is positive then taking Q = id we see
that the Berkovich spectrum of an affinoid algebra is a limit of the Berkovich
spectrum of its quantum analytic deformation.
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The above Proposition shows in a toy-model the drastic difference with formal
deformation quantization. In the latter case deformations Aq of a commutative
algebra A1 are “all the same” as long as q �= 1. In particular, except of
few special values of q, they have the same “spectra” in the sense of non-
commutative algebraic geometry or representation theory. In analytic case
Berkovich spectrum can contain points which are “far” from the commutative
ones (e.g. we have seen that the discs E(a, ρ) ⊂ E(0, r) can be quantized as
long as the radius |ρ| is not small). Thus the quantized space contains “holes”
(non-archimedean version of “discretization” of the space after quantization).

6 Non-Commutative Stein Spaces

This example is borrowed from [15].
Let K be a non-archimedean valuation field and A be a unital Frechet

K-algebra. We say that A is Frechet-Stein if there is a sequence v1 ≤ v2 ≤
... ≤ vn ≤ ... of continuous seminorms on A which define the Frechet topology
and:

(a) the completions Avn
of the algebras A/Ker vn are left notherian for

all n ≥ 1;
(b) each Avn

is a flat Avn+1-module, n ≥ 1.
Here we do not require that vn are submultiplicative, only the inequalities

vn(xy) ≤ const vn(x)vn(y). Clearly the sequence (Avn
)n≥1 is a projective

system of algebras and its projective limit is isomorphic to A.
A coherent sheaf for a Frechet-Stein algebra (A, vn)n≥1 is a collection M =

(Mn)n≥1 such that each Mn is a finite Banach Avn
-module and for each n ≥ 1

one has natural isomorphism Avn
⊗Avn+1

Mn+1 " Mn.
The inverse limit of the projective system Mn is an A-module called the

module of global sections of the coherent sheaf M . Coherent sheaves form
an abelian category. It is shown in [15] that the global section functor from
coherent sheaves to finite Banach A-modules is exact (this is an analogue of
A and B theorems of Cartan).

One can define the non-commutative analytic spectrum of Frechet–Stein
algebras in the same way as we did for Banach algebras, starting with the
category of coherent sheaves.

It is shown in [15] that if G is a compact locally analytic group then the
strong dual D(G,K) to the space of K-valued locally analytic functions is a
Frechet–Stein algebra. In the case G = Zp it is isomorphic to the (commuta-
tive) algebra of power series converging in the open unit disc in the completion
of the algebraic closure of K. In general, the Frechet–Stein algebra structure
on D(G,K) is defined by a family of norms which are submultiplicative only.
Coherent sheaves for the algebra D(G,K) should give rise to coherent sheaves
on the non-commutative analytic spectrum MNC(D(G,K)), rather than on
the Berkovich spectrum M(D(G,K)).
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7 Non-Commutative Analytic K3 Surfaces

7.1 General Scheme

The following way of constructing a non-commutative analytic K3 surface X
over the field K = C((t)) was suggested in [8].

(1) We start with a two-dimensional sphere B := S2 equipped with an
integral affine structure outside of a finite subset Bsing = {x1, ..., x24} of 24
distinct points (see [8] for the definitions and explanation why |Bsing| = 24).
We assume that the monodromy of the affine structure around each point xi

is conjugate to the 2 × 2 unipotent Jordan block (it is proved in [8] that this
restriction enforces the cardinality of Bsing to be equal to 24).

(2) In addition to the above data we have an infinite set of “trees” embed-
ded in S2, called lines in [8]. Precise definition and the existence of such a set
satisfying certain axioms can be found in [8], Sects. 7.9, 11.5.

(3) The non-commutative analytic space Xan
q will be defined defined by

a pair (X0,OX0,q), where q ∈ K∗ is an arbitrary element satisfying the con-
dition |q| = 1, X0 is a topological K3 surface and OX0,q is a sheaf on (a
certain topology on) X0 of non-commutative noetherian algebras over the
field K.

(4) There is a natural continuous map π : X0 → S2 with the generic fibre
being a two-dimensional torus. The sheaf OX0,q is uniquely determined by its
direct image OS2,q := π∗(OX0,q). Hence the construction of Xq is reduced to
the construction of the sheaf OS2,q on the sphere S2.

(5) The sheaf OS2,q is glued from two sheaves: a sheaf Osing
q defined in

a neighbourhood W of the “singular” subset Bsing and a sheaf Ononsing
q on

S2 \W .
(6) The sheaf Osing

q is defined by an “ansatz” described below, while the
sheaf Ononsing

q is constructed in two steps. First, with any integral affine struc-
ture and an element q ∈ K∗, |q| = 1 one can associate canonically a sheaf Ocan

q

of non-commutative algebras over K. Then, with each line l one associates
an automorphism ϕl of the restriction of Ocan

q to l. The sheaf Ononsing
q is

obtained from the restriction of Ocan
q to the complement to the union of all

lines by the gluing procedure by means of ϕl.
The above scheme was realized in [8] in the case q = 1. In that case one

obtains a sheaf OX0,1 of commutative algebras which is the sheaf of analytic
functions on the non-archimedean analytic K3 surface. In this section we will
explain what has to be changed in [8] in order to handle the case q �= 1, |q| = 1.
As we mentioned above, in this case OX0,q will be a sheaf of non-commutative
algebras, which is a flat deformation of OX0,0. It was observed in [8] that OX0,1

is a sheaf of Poisson algebras. The sheaf OX0,q is a deformation quantization
of OX0,1. It is an analytic (not a formal) deformation quantization with re-
spect to the parameter q − 1. The topology on X0 will be clear from the
construction.
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7.2 Z-Affine Structures and the Canonical Sheaf

Let K be a non-archimedean valuation field. Fix an element q ∈ K∗, |q| = 1.
Let us introduce invertible variables ξ, η such that

ηξ = qξη.

Then we define a sheaf Ocan
q on R2 such that for any open connected subset

U one has

Ocan
q (U) =

⎧
⎨

⎩

∑

n,m∈Z

cn,mξnηm | ∀(x, y) ∈ U sup
n,m

(log(|cn,m|)+nx+my) < ∞

⎫
⎬

⎭
.

The above definition is motivated by the following considerations.
Recall that an integral affine structure (Z-affine structure for short) on an

n-dimensional topological manifold Y is given by a maximal atlas of charts
such that the change of coordinates between any two charts is described by
the formula

x′
i =

∑

1≤j≤n

aijxj + bi,

where (aij) ∈ GL(n,Z), (bi) ∈ Rn. In this case one can speak about the
sheaf of Z-affine functions, i.e. those which can be locally expressed in affine
coordinates by the formula f =

∑
1≤i≤n aixi + b, ai ∈ Z, b ∈ R. Another

equivalent description: Z-affine structure is given by a covariant lattice TZ ⊂
TY in the tangent bundle (recall that an affine structure on Y is the same as
a torsion free flat connection on the tangent bundle TY ).

Let Y be a manifold with Z-affine structure. The sheaf of Z-affine functions
AffZ := AffZ,Y gives rise to an exact sequence of sheaves of abelian groups

0 → R → AffZ → (T ∗)Z → 0,

where (T ∗)Z is the sheaf associated with the dual to the covariant lattice
TZ ⊂ TY .

Let us recall the following notion introduced in [8], Sect. 7.1.

Definition 7.1 A K-affine structure on Y compatible with the given Z-affine
structure is a sheaf AffK of abelian groups on Y , an exact sequence of sheaves

1 → K× → AffK → (T ∗)Z → 1,

together with a homomorphism Φ of this exact sequence to the exact sequence
of sheaves of abelian groups

0 → R → AffZ → (T ∗)Z → 0,

such that Φ = id on (T ∗)Z and Φ = val on K×.
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Since Y carries a Z-affine structure, we have the corresponding GL(n,Z)�

Rn-torsor on Y , whose fibre over a point x consists of all Z-affine coordinate
systems at x.

Then one has the following equivalent description of the notion of K-affine
structure.

Definition 7.2 A K-affine structure on Y compatible with the given Z-affine
structure is a GL(n,Z)�(K×)n-torsor on Y such that the application of val×n

to (K×)n gives the initial GL(n,Z) � Rn-torsor.

Assume that Y is oriented and carries a K-affine structure compatible with
a given Z-affine structure. Orientation allows us to reduce to SL(n,Z)�(K×)n

the structure group of the torsor defining the K-affine structure. One can
define a higher-dimensional version of the sheaf Ocan

q in the following way. Let
z1, ..., zn be invertible variables such that zizj = qzjzi, for all 1 ≤ i < j ≤ n.
We define the sheaf Ocan

q on Rn, n ≥ 2 by the same formulas as in the case
n = 2:

Ocan
q (U) =

{
∑

I=(I1,...,In)∈Zn

cIz
I , | ∀(x1, ..., xn)

∈ U sup
I

⎛

⎝log(|cI |) +
∑

1≤m≤n

Imxm

⎞

⎠ < ∞
}

,

where zI = zI1
1 . . . zIn

n . Since |q| = 1 the convergency condition does not
depend on the order of variables.

The sheaf Ocan
q can be lifted to Y (we keep the same notation for the

lifting). In order to do that it suffices to define the action of the group
SL(n,Z) � (K×)n on the canonical sheaf on Rn. Namely, the inverse to an
element (A, λ1, ..., λn) ∈ SL(n,Z) � (K×)n acts on monomials as

zI = zI1
1 . . . zIn

n 
→
(∏n

i=1λ
Ii
i

)
zA(I) .

The action of the same element on Rn is given by a similar formula:

x = (x1, . . . , xn) 
→ A(x) − (val(λ1), . . . , val(λn)) .

Note that the stalk of the sheaf Ocan
q over a point y ∈ Y is isomorphic to

a direct limit of algebras of functions on quantum analytic tori of various
multiradii.

Let Y = ∪αUα be an open covering by coordinate charts Uα " Vα ⊂
Rn such that for any α, β we are given elements gα,β ∈ SL(n,Z) � (K×)n

satisfying the 1-cocycle condition for any triple α, β, γ. Then the lifting of
Ocan

h to Y is obtained via gluing by means of the transformations gα,β .
Let Gan

m be the analytic space corresponding to the multiplicative group
Gm and (Tn)an := (Gan

m )n the n-dimensional analytic torus. Then one has a
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canonically defined continuous map πcan : (Tn)an → Rn such that πcan(p) =
(−valp(z1), ...,−valp(zn)) = (log|z1|p, ..., log|zn|p), where |a|p (resp. valp(a))
denotes the seminorm (resp. valuation) of an element a corresponding to the
point p.

For an open subset U ∈ Rn we have a topological K-algebra Ocan
q (U)

defined by the formulas above. Note that a point x = (x1, ..., xn) ∈ Rn defines
a multiplicative seminorm |

∑
I cIz

I |exp(x) on the algebra of formal series of
q-commuting variables z1, ..., zn (here exp(x) = (exp(x1), ..., exp(xn))).

Let M(Ocan
q (U)) be the set of multiplicative seminorms ν on Ocan

q (U)
extending the norm on K. We have defined an embedding U → M(Ocan

q (U)),
such that (x1, ..., xn) corresponds to a seminorm with |zi| = exp(xi), 1 ≤ i ≤
n. The map πcan : | • | 
→ (log|z1|, ..., log|zn|) is a retraction of M(Ocan

q (U))
to the image of U .

Let Sn
1 ⊂ (K×)n be the set of such (s1, ..., sn) that |si| = 1, 1 ≤ i ≤ n.

The group Sn
1 acts on Ocan

h (U) in such a way that zi 
→ sizi. Clearly the map
πcan is Sn

1 -invariant. For this reason we will call πcan a quantum analytic torus
fibration over U . More precisely, we reserve this name for a pair (U,Ocan

q (U)),
where the algebra is equipped with the Sn

1 -action. We suggest to think about
such a pair as of the algebra Oq(π−1

can(U)) of analytic functions on the open
subset π−1

can(U) of the non-commutative analytic torus (Tn
q (Zn)an, ϕ0), where

ϕ0((a1, ..., an), (b1, ..., bn)) = a1b1 + ... + anbn.
We can make a category of the above pairs, defining a morphism

(U,Ocan
q (U)) → (V,Ocan

q (V )) as a pair (f, φ) where f : U → V is a continuous
map and φ : Ocan

q (f−1(V )) → Ocan
q (V ) is a Sn

1 -equivariant homomorphism of
algebras. In particular we have the notion of isomorphism of quantum analytic
torus fibrations.

Let U ⊂ Rn be an open set and A be a non-commutative affinoid K-
algebra equipped with a Sn

1 -action. We say that a pair (U,A) defines a quan-
tum analytic torus fibration over U if it is isomorphic to the pair (U,Ocan

q (U)).
Notice that morphisms of quantum analytic torus fibrations are compatible
with the restrictions on the open subsets. Therefore we can introduce a topol-
ogy on (Tn)an taking π−1

can(U), U ⊂ R2 as open subsets and make a ringed
space assigning the algebra Oq(U) to the open set π−1

can(U). We will denote
the sheaf by (πcan)∗(O(T n)an,q). Its global sections (for U = Rn) coincides
with the projective limit of algebras of analytic functions on quantum tori of
all possible multiradii. Slightly abusing the terminology we will call the above
ringed space a quantum analytic torus.

Remark 7.3 The above definition is a toy-model of a q-deformation of the nat-
ural retraction Xan → Sk(X) of the analytic space Xan associated with the
maximally degenerate Calabi–Yau manifold X onto its skeleton Sk(X) (see
[8]). Analytic torus fibrations introduced in [8] are “rigid analytic” analogues
of Lagrangian torus fibrations in symplectic geometry. Moreover, the mirror
symmetry functor (or rather its incarnation as a Fourier–Mukai transform)



On Non-Commutative Analytic Spaces Over Non-Archimedean Fields 241

interchanges these two types of torus fibrations for mirror dual Calabi–Yau
manifolds.

It turns out that the sheaf Ocan
q is not good for construction of a non-

commutative analytic K3 surface. We will explain later how it should be
modified. Main reason for the complicated modification procedure comes from
Homological Mirror Symmetry, as explained in [8]. In a few words, the derived
category of coherent sheaves on a non-commutative analytic K3 surface should
be equivalent to a certain deformation of the Fukaya category of the mirror
dual K3 surface. If the K3 surface is realized as an elliptic fibration over CP1

then there are fibers (they are 2-dimensional Lagrangian tori) which contain
boundaries of holomorphic discs. Those discs give rise to an infinite set of lines
on the base of the fibration. In order to have the above-mentioned categorical
equivalence one should modify the canonical sheaf for each line.

7.3 Model Near a Singular Point

Let us fix q ∈ K∗, |q| = 1.
We start with the open covering of R2 by the following sets Ui, 1 ≤ i ≤ 3.

Let us fix a number 0 < ε < 1 and define

U1 = {(x, y) ∈ R2|x < ε|y| }
U2 = {(x, y) ∈ R2|x > 0, y < εx }
U3 = {(x, y) ∈ R2|x > 0, y > 0}

Clearly R2 \ {(0, 0)} = U1 ∪ U2 ∪ U3. We will also need a slightly modified
domain U ′

2 ⊂ U2 defined as {(x, y) ∈ R2|x > 0, y < ε
1+εx }.

Recall that one has a canonical map πcan : (T 2
q )an → R2.

We define Ti := π−1
can(Ui), i = 1, 3 and T2 := π−1

can(U ′
2) (see the explanation

below). Then the projections πi : Ti → Ui are given by the formulas

πi(ξi, ηi) = πcan(ξi, ηi) = (log |ξi|, log |ηi|), i = 1, 3

π2(ξ2, η2) =
{

(log |ξ2|, log |η2|) if |η2| < 1
(log |ξ2| − log |η2|, log |η2|) if |η2| ≥ 1

In these formulas (ξi, ηi) are coordinates on Ti, 1 ≤ i ≤ 3. More pedanti-
cally, one should say that for each Ti we are given an algebra Oq(Ti) of
series

∑
m,n cmnξ

m
i ηn

i such that ξiηi = qηiξi and for a seminorm | • | cor-
responding to a point of Ti (which means that (log|ξi|, log|ηi|) ∈ Ui) one has:
supm,n(mlog|ξi| + n log|ηi|) < +∞. In this way we obtain a sheaf of non-
commutative algebras on the set Ui, which is the subset of the Berkovich
spectrum of the algebra Oq(Ti). We will denote this sheaf by OTi,q.

Let us introduce the sheaf Ocan
q on R2\{(0, 0)}. It is defined as (πi)∗ (OTi,q)

on each domain Ui, with identifications
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(ξ1, η1) = (ξ2, η2) on U1 ∩ U2

(ξ1, η1) = (ξ3, η3) on U1 ∩ U3

(ξ2, η2) = (ξ3η3, η3) on U2 ∩ U3

Let us introduce the sheaf Osing
q on R2 \ {(0, 0)}. On the sets U1 and U2 ∪U3

this sheaf is isomorphic to Ocan
q (by identifying of coordinates (ξ1, η1) and

of glued coordinates (ξ2, η2) and (ξ3, η3) respectively). On the intersection
U1∩(U2∪U3) we identify two copies of the canonical sheaf by an automorphism
ϕ of Ocan

q . More precisely, the automorphism is given (we skip the index of
the coordinates) by

ϕ(ξ, η) =
{

(ξ(1 + η), η) on U1 ∩ U2

(ξ(1 + 1/η), η) on U1 ∩ U3

7.4 Lines and Automorphisms

We refer the reader to [8] for the precise definition of the set of lines and axioms
this set is required to obey. Roughly speaking, for a manifold Y which carries
a Z-affine structure a line l is defined by a continuous map fl : (0,+∞) →
Y and a covariantly constant nowhere vanishing integer-valued 1-form αl ∈
Γ ((0,+∞), f∗

l ((T ∗)Z). A set L of lines is required to be decomposed into a
disjoint union L = Lin ∪ Lcom of initial and composite lines. Each composite
line is obtained as a result of a finite number of “collisions” of initial lines. A
collision is described by a Y -shape figure, where the leg of Y is a composite
line, while two other segments are “parents” of the leg. A construction of the
set L satisfying the axioms from [8] was proposed in [8], Section 9.3.

With each line l we can associate a continuous family of automorphisms
of stalks of sheaves of algebras ϕl(t) : (Ocan

q )Y,fl(t) → (Ocan
q )Y,fl(t).

Automorphisms ϕl can be defined in the following way (see [8], Sect. 10.4).
First we choose affine coordinates in a neighborhood of a point b ∈ B \

Bsing, identifying b with the point (0, 0) ∈ R2. Let l = l+ ∈ Lin be (in the
standard affine coordinates) a line in the half-plane y > 0 emerging from
(0, 0) (there is another such line l− in the half-plane y < 0, see [8] for the
details). Assume that t is sufficiently small. Then we define ϕl(t) on topological
generators ξ, η by the formula

ϕl(t)(ξ, η) = (ξ(1 + 1/η), η).

In order to extend ϕl(t) to the interval (0, t0), where t0 is not small, we cover
the corresponding segment of l by open charts. Then a change of affine co-
ordinates transforms η into a monomial multiplied by a constant from K×.
Moreover, one can choose the change of coordinates in such a way that η 
→ Cη
where C ∈ K×, |C| < 1 (such change of coordinates preserve the 1-form dy.
Constant C is equal to exp(−L), where L is the length of the segment of l
between two points in different coordinate charts). Therefore η extends ana-
lytically in a unique way to an element of Γ ((0,+∞), f∗

l ((Ocan
q )×)). Moreover
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the norm |η| strictly decreases as t increases and remains strictly smaller than
1. Similarly to [8], Sect. 10.4 one deduces that ϕl(t) can be extended for all
t > 0. This defines ϕl(t) for l ∈ Lin.

Next step is to extend ϕl(t) to the case when l ∈ Lcom, i.e. to the case
when the line is obtained as a result of a collision of two lines belonging
to Lin. Following [8], Sect. 7.10, we introduce a group G which contains all
the automorphisms ϕl(t) and then prove the factorization theorem (see [8],
Theorem 6) which allows us to define ϕl(0) in the case when l is obtained as
a result of a collision of two lines l1 and l2. Then we extend ϕl(t) analytically
for all t > 0 similarly to the case l ∈ Lin.

More precisely, the construction of G goes such as follows. Let (x0, y0) ∈
R2 be a point, α1, α2 ∈ (Z2)∗ be 1-covectors such that α1 ∧ α2 > 0. Denote
by V = V(x0,y0),α1,α2 the closed angle

{(x, y) ∈ R2|〈αi, (x, y) − (x0, y0)〉 ≥ 0, i = 1, 2 }.

Let Oq(V ) be a K-algebra consisting of series f =
∑

n,m∈Z cn,mξnηm, such
that ξη = qηξ and cn,m ∈ K satisfy the condition that for all (x, y) ∈ V we
have:

1. if cn,m �= 0 then 〈(n,m), (x, y)−(x0, y0)〉 ≤ 0, where we identified (n,m) ∈
Z2 with a covector in (T ∗

p Y )Z;
2. log |cn,m| + nx + my → −∞ as long as |n| + |m| → +∞.

For an integer covector μ = adx + bdy ∈ (Z2)∗ we denote by Rμ the
monomial ξaηb. Then we consider a pro-unipotent group G := G(q, α1, α2, V )
of automorphisms of Oq(V ) having the form

g =
∑

n1,n2≥0,n1+n2>0

cn1,n2R
−n1
α1

R−n2
α2

where

log |cn,m| − n1〈α1, (x, y)〉 − n2〈α2, (x, y)〉 ≤ 0 ∀ (x, y) ∈ V

The latter condition is equivalent to log |cn,m| − 〈n1α1 + n2α2, (x0, y0)〉 ≤ 0.
Fixing the ratio λ = n2/n1 ∈ [0,+∞]Q := Q≥0 ∪∞ we obtain a subgroup

Gλ := Gλ(q, α1, α2, V ) ⊂ G. There is a natural map
∏

λ Gλ → G, defined as
in [8], Sect. 10.2. The above-mentioned factorization theorem states that this
map is a bijection of sets.

Let us now assume that lines l1 and l2 collide at p = fl1(t1) = fl2(t2), gen-
erating the line l ∈ Lcom. Then ϕl(0) is defined with the help of factorization
theorem. More precisely, we set αi := αli(ti), i = 1, 2 and the angle V is the
intersection of certain half-planes Pl1,t1 ∩ Pl2,t2 defined in [8], Sect. 10.3. The
half-plane Pl,t is contained in the region of convergence of ϕl(t). By construc-
tion, the elements g0 := ϕl1(t1) and g+∞ := ϕl2(t2) belong respectively to G0

and G+∞. The we have:
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g+∞g0 =
∏

→
(
(gλ)λ∈[0,+∞]Q

)
= g0 . . . g1/2 . . . g1 . . . g+∞.

Each term gλ with 0 < λ = n1/n2 < +∞ corresponds to the newborn line l
with the direction covector n1αl1(t1)+n2αl2(t2). Then we set ϕl(0) := gλ. This
transformation is defined by a series which is convergent in a neighbourhood
of p and using the analytic continuation we obtain ϕl(t) for t > 0, as we said
above. Recall that every line carries an integer 1-form αl = adx + bdy. By
construction, ϕl(t) ∈ Gλ, where λ is the slope of αl.

Having automorphisms ϕl assigned to lines l ∈ L we proceed as in [8],
Section 7.11, modifying the sheaf Ocan

q along each line. We denote the result-
ing sheaf Ononsing

q . By construction it is isomorphic to the sheaf Osing
q in a

neighborhood of the point (0, 0).
Let us now consider the manifold Y = S2 \ Bsing, i.e. the complement of

24 points on the sphere S2 equipped with the Z-affine structure, which has
standard singularity at each point xi ∈ Bsing, 1 ≤ i ≤ 24 (see Sect. 7.1). Using
the above construction (with any choice of set of lines on S2) we define the
sheaf Ononsing

S2,q on Y . Notice that in a small neighbourhood of each singular
point xi the sheaf Ononsing

S2,q is isomorphic to the sheaf Osing
q (in fact they

become isomorphic after identification of the punctured neighbourhood of xi

with the punctured neighbourhood of (0, 0) ∈ R2 equipped with the standard
singular Z-affine structure (see Sect. 7.1 and [8], Sect. 6.4 for the description
of the latter). In the next subsection we will give an alternative description of
the sheaf Osing

q . It follows from that description that Osing
q can be extended

to the point (0, 0). It gives a sheaf Osing
S2,q in the neighbourhood of Bsing. As a

result we will obtain the sheaf OS2,q of non-commutative K-algebras on the
whole sphere S2 such that it is isomorphic to Ononsing

S2,q on the complement of
Bsing and isomorphic to Osing

S2,q in a neighborhood of Bsing.

7.5 About the Sheaf Osing
q

We need to check that the sheaf OS2,q is a flat deformation of the sheaf OS2

constructed in [8]. For the sheaf Ononsing
S2,q this follows from the construction.

Indeed, the algebra of analytic functions on the quantum analytic torus (of
any multiradius) is a flat deformation of the algebra of analytic functions on
the corresponding “commutative” torus, equipped with the Poisson bracket
{x, y} = xy. The group G = G(q) described in the previous subsection is a
flat deformation of its “commutative” limit G(1) := G(q = 1) defined in [8],
Sect. 7.10. The group G(1) preserves the above Poisson bracket. In order to
complete the construction of the non-commutative space analytic K3 surface
Xq we need to prove that the sheaf Osing

q is a flat deformation with respect
to q − 1 of the sheaf Omodel introduced in [8], Sect. 7.8. First we recall the
definition of the latter.

Let S ⊂ A3 be an algebraic surface given by equation (αβ − 1)γ = 1 in
coordinates (α, β, γ) and San be the corresponding analytic space. We define
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a continuous map f : San → R3 by the formula f(α, β, γ) = (a, b, c) where
a = max(0, log |α|p), b = max(0, log |β|p), c = log |γ|p = − log |αβ − 1|p. Here
| · |p = exp(−valp(·)) denotes the multiplicative seminorm corresponding to
the point p ∈ San.

Let us consider the embedding j : R2 → R3 given by formula

j(x, y) =
{

(−x , max(x + y, 0) , −y ) if x ≤ 0
( 0 , x + max(y, 0) , −y ) if x ≥ 0

One can easily check that the image of j coincides with the image of f . Let
us denote by π : San → R2 the map j(−1) ◦f . Finally, we denote π∗(OSan) by
Omodel := Omodel

R2 . It was shown in [8], Sect. 7.8, that Omodel is canonically
isomorphic to the sheaf Osing

q=1 (the latter is defined as a modification of the
sheaf Ocan

q=1 by means of the automorphism ϕ, given by the formula at the end
of Sect. 7.3 for commuting variables ξ and η).

Let us consider a non-commutative K-algebra Aq(S) generated by gener-
ators α, β, γ subject to the following relations:

αγ = qγα, βγ = qγβ,

βα− qαβ = 1 − q,

(αβ − 1)γ = 1.

For q = 1 this algebra coincides with the algebra of regular functions on the
surface X ⊂ A3

K given by the equation (αβ − 1)γ = 1 and moreover, it is a
flat deformation of the latter with respect to the parameter q − 1.

Recall that in Sect. 7.3 we defined three open subsets Ti, 1 ≤ i ≤ 3 of the
two-dimensional quantum analytic torus (T 2)an, The subset Ti is defined as
a ringed space (π−1

i (Ui),OTi,q), where Ui are open subsets of R2 and OTi,q is
a sheaf of non-commutative algebras, uniquely determined by the K-algebra
Oq(Ti) of its global sections.

We define morphisms gi : Ti ↪→ S, 1 ≤ i ≤ 3 by the following formulas

g1(ξ1, η1) = (ξ1−1, ξ1(1 + η1), η1
−1)

g2(ξ2, η2) = ((1 + η2)ξ2−1, ξ2, η2
−1)

g3(ξ3, η3) = ((1 + η3)(ξ3η3)−1, ξ3η3, (η3)−1)

More precisely this means that for each 1 ≤ i ≤ 3 we have a homomorphism
of K-algebras Aq(S) → Oq(Ti) such that α is mapped to the first coordi-
nate of gi, β is mapped to the second coordinate and γ is mapped to the
third coordinate. One checks directly that three coordinates obey the rela-
tions between α, β, γ. Modulo (q − 1) these morphisms are inclusions. In the
non-commutative case they induce embeddings of M(Oq(Ti)), 1 ≤ i ≤ 3 into
the set M(Aq(S)) of multiplicative seminorms on Aq(S).

Notice that in the commutative case we have: j ◦ πi = f ◦ gi and
f−1(j(Ui)) = gi(Ti) for all 1 ≤ i ≤ 3. Using this observation we can de-
compose a neighbourhood V of π−1(0, 0) in San into three open analytic
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subspaces and describe explicitly algebras of analytic functions as series in
coordinates (α, β) or (β, γ) or (α, γ) (choice of the coordinates depend on the
domain) with certain grows conditions on the coefficients of the series. This
gives explicit description of the algebra π∗(OSan(π(V ))). Then we declare the
same description in the non-commutative case to be the answer for the direct
image. Non-commutativity does not affect the convergency condition because
|q| = 1. This description, perhaps, can be obtained from the “general theory”
which will developed elsewhere. The direct check, as in the commutative case,
shows the compatibility of this description of the direct image sheaf with the
description of Ononsing

q in the neighborhood of (0, 0). Therefore we can glue
both sheaves together, obtaining OS2,q. This completes the construction.
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Abstract. We review how both derived categories and stacks enter physics. The
physical realization of each has many formal similarities. For example, in both the
cases, equivalences are realized via renormalization group flow: in the case of derived
categories, (boundary) renormalization group flow realizes the mathematical proce-
dure of localization on quasi-isomorphisms and, in the case of stacks, worldsheet
renormalization group flow realizes presentation-independence. For both, we outline
current technical issues and applications.

1 Introduction

For many years, much mathematics relevant to physics (Gromov–Witten the-
ory, Donaldson theory, quantum cohomology, etc.) has appeared physically in
correlation function computations in supersymmetric field theories. Typically
one can see all aspects of the mathematics encoded somewhere in the physics,
if one takes the time to work through the details. In this fashion we have been
able to understand the relation of these parts of mathematics to physics very
concretely.

However, more recently we have begun to see a more complicated dictio-
nary, in which mathematical ideas of homotopy and categorical equivalences
map to the physical notion of the renormalization group. The renormalization
group is a very powerful idea in physics, but unlike the correlation function
calculations alluded to in the last paragraph, it is not currently technically
feasible to follow the renormalization group explicitly and concretely a finite
distance along its flow. Unlike what has happened in the past, we can no
longer see all details of the mathematics explicitly and directly in the physics,
and instead have to appeal to indirect arguments to make the connection.

In this note we will outline two such recent examples of pieces of mathe-
matics in which important components map to the renormalization group in
physics. Specifically, we will briefly discuss how derived categories and stacks
enter physics. For information on the mathematics of derived categories, see
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for example [1, 2, 3] and for a more extensive description of how derived
categories enter physics, see the review article [4]. For information on the
mathematics of stacks see [5, 6].

2 The Renormalization Group

For readers not1 familiar with the notion, the renormalization group is a
semigroup operation on an abstract space of physical theories. Given one
quantum field theory, the semigroup operation constructs new quantum field
theories which are descriptions valid at longer and longer distance scales.

In particular, under the renormalization group two distinct theories can
sometimes become the same (the semigroup operation is not invertible). We
have schematically illustrated such a process in the two pictures below. Al-
though the two patterns look very different, at long distances the checkerboard
on the right becomes a better and better approximation to the square on the
left, until the two are indistinguishable.

Two theories that flow to the same theory under the renormalization group
are said to be in the same “universality class” of renormalization group flow.

The renormalization group is a powerful tool but unfortunately we cannot
follow it completely explicitly in general. The best we can typically do is
construct an asymptotic series expansion to the tangent vector of the flow at
any given point. Thus, ordinarily we cannot really prove in any sense that two
theories will flow under the renormalization group to the same point.

On the one hand, a mathematical theory that makes predictions for how
different theories will flow, as happens in the application of both derived cat-
egories and stacks to physics, is making strong statements about physics. On
the other hand, we can only check such statements indirectly, by performing
many consistency tests in numerous examples.

1 The talk was given to an audience of both mathematicians and physicists, and
we have attempted to make these notes accessible to both audiences as well.
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3 Derived Categories in Physics

3.1 History

Derived categories entered physics gradually through a succession of develop-
ments. Before describing the modern understanding, let us take a moment to
review the history.

One of the original motivations was work of Kontsevich, his “homolog-
ical mirror symmetry” approach to mirror symmetry [7]. Ordinary mirror
symmetry is a relation between two Calabi–Yau’s, but Kontsevich’s Homo-
logical mirror symmetry relates derived categories of coherent sheaves on one
Calabi–Yau to Fukaya categories on the other. At the time it was proposed,
no physicist had any idea how or even if derived categories entered physics –
his proposal predated even D-branes – a testament to Kontsevich’s insight.

Shortly after Kontsevich’s work, in 1995 Polchinski reminded everyone
of his work on D-branes and explained their relevance to string duality [8].
Although neither derived categories nor sheaves appeared in [8], they would
later play a role.

About a year later, Harvey and Moore speculated in [9] that coherent
sheaves might be a good mathematical description for some D-branes. Given
that impetus, other authors soon discovered experimentally that, indeed,
mathematical properties of coherent sheaves at least often computed phys-
ical quantities of corresponding D-branes. For example, it was discovered em-
pirically that massless states between D-branes were counted by Ext groups
between the corresponding sheaves, though the complete physical understand-
ing of why that was the case was not worked out until [10, 11, 12].

Having understood how sheaves could at least often be relevant to physics
was an important step, but derived categories of sheaves are more compli-
cated than just sheaves – derived categories of sheaves involve complexes of
sheaves, not just sheaves. The next intellectual step was Sen’s introduction
of antibranes [13] and Witten’s realization that Sen’s work amounted to a
physical realization of K theory [14] in 1998.

With that insight, the first proposals for how derived categories enter
physics became possible. Shortly after Witten’s introduction of K theory, it
was proposed in [15] that the same notion of antibranes, when applied to
sheaf models, could be used to give a physical realization of derived categories.
Specifically, a complex of branes representing any given object in a derived
category should correspond physically to a set of branes and antibranes, with
the maps in the complex defining a set of tachyons. Two objects in the de-
rived category related by quasi-isomorphism should correspond physically to
two sets of branes and antibranes that are in the same universality class of
renormalization group flow. In this fashion one could finally begin to have a
physical understanding of Kontsevich’s homological mirror symmetry.

Although several papers were written and talks given, this physical under-
standing of derived categories languished in obscurity until Douglas popular-
ized the same notion 2 years later in [16]. Douglas also introduced the notion
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of pi-stability, which has seen some interest in the mathematics community
(see e.g. [17]).

3.2 D-Branes and Sheaves

To lowest order, a D-brane is a pair, consisting of a submanifold of spacetime
together with a vector bundle on that submanifold. In fact, we will specialize
to D-branes in the open string topological B model, in which case the sub-
manifolds are complex submanifolds and the vector bundles are holomorphic.
Such data we can describe by the sheaf i∗E , where i is the inclusion map of the
submanifold into the spacetime and E is a vector bundle on the submanifold.

In what sense are sheaves a good model for D-branes? After all, physically
D-branes are specified by a set of boundary conditions on open strings together
with Chan–Paton data, which is not the same thing as a sheaf. However, we
can compute physical quantities (such as massless spectra) using mathemat-
ical operations on sheaves (such as Ext groups) and it is for this reason that
we consider sheaves to be a good model for D-branes.

In particular, mathematical deformations of a sheaf match physical defor-
mations of the corresponding D-brane. This is ordinarily one of the first tests
that one performs given some new mathematical model of part of physics.

Let us next briefly outline how these sorts of computations are performed.
Massless states in the topological B model are BRST-closed combinations

of the fields φi, φı, ηı, θi, modulo BRST-exact combinations. The fields φi, φı

are local coordinates on the target space and ηı, θi are Grassman-valued. In
simple cases, the BRST operator acts as follows:

QBRST · φi = 0, QBRST · φı �= 0
QBRST · ηı = 0, QBRST · θi = 0

States are then of the form

b(φ)αβ j1···jm

ı1···ın
ηı1 · · · ηınθj1 · · · θjm

where α, β are “Chan–Paton” indices, coupling to two vector bundles E , F .
We can understand these states mathematically by applying the dictionary
(for an open string both of whose ends lie on a submanifold S ⊆ X)

QBRST ∼ ∂, ηı ∼ dzı ∼ TS, θi ∼ NS/X

Then the states above can be identified with elements of the sheaf cohomology
group

Hn(S, E∨ ⊗ F ⊗ ΛmNS/X).

The analysis above is a bit quick and only applies in special cases. In general,
one must take into account complications such as:

1. The Freed–Witten anomaly [18], which says that to the sheaf i∗E one
associates a D-brane on S with ‘bundle’ E ⊗

√
KS instead of E [10].
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2. The open string analogue of the Calabi–Yau condition, which for two D-
branes with trivial bundles wrapped on submanifolds S, T , becomes the
constraint [10]

ΛtopNS∩T/S ⊗ ΛtopNS∩T/T
∼= O

3. When the Chan–Paton bundles have nonzero curvature, the boundary
conditions on the fields are modified [19]; for example, for line bundles,
the constraint can be written

θi = Fij η
j

Taking into account these complications will in general physically realize a
spectral sequence [10]; for example, for D-branes wrapped on the same sub-
manifold S,

Hn
(
S, E∨ ⊗ F ⊗ ΛmNS/X

)
=⇒ Extn+m

X (i∗E , i∗F)

Not all sheaves are of the form i∗E for some vector bundle E on S. How can
one handle more general cases?

A partial answer was proposed in [20] (before the publication of [16])
and later worked out in more detail in [21], using mathematics appearing
in [22]. The proposal made there was that some more general sheaves can be
understood as mathematical models of D-branes with non-zero “Higgs fields”.
For each direction perpendicular to the D-brane worldvolume, there is a Higgs
field, which one can interpret as a holomorphic section of E∨⊗E ⊗NS/X . The
idea is that we can interpret such a section as defining a deformation of the
ring action on the module for E , yielding a more general module, meaning a
more general sheaf.

A trivial example of this is as follows. Start with a skyscraper sheaf at the
origin of the complex line, corresponding to a single D-brane at the origin. The
module corresponding to that sheaf is C[x]/(x). Now, consider the Higgs vev
a (E∨ ⊗ E ⊗ NS/X

∼= O here). Describe the original module as a generator α
subject to the relation x·α = 0, then define the new module by x·α = aα. That
relation is the same as (x− a) ·α = 0 and so the new module is C[x]/(x− a),
which describes a D-brane shifted from the origin to point a. A Higgs field in
such a simple case should translate the D-brane, so this result is exactly what
one would expect.

Similarly, the sheaf C[x]/(x2) (the structure sheaf of a non-reduced
scheme) corresponds to a pair of D-branes over the origin of the complex
line with Higgs field [

0 1
0 0

]

We believe this mathematics has physical meaning because massless states in
theories with non-zero Higgs fields can be shown to match Ext groups between
the sheaves obtained by the process above. Physically, a non-zero Higgs field
deforms the BRST operator to the form
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QBRST = ∂ + Φi
1θi − Φi

2θi

where Φi
1, Φ

i
2 are Higgs fields on either side of the open string. A necessary

condition for the topological field theory to be sensible is that the BRST
operator square to zero, which imposes the constraints that the Higgs fields
be holomorphic and that the different Higgs fields commute with one another
(which ordinarily would be an F term condition in the target-space theory).
When one computes massless states using the deformed BRST operator above,
one gets Ext groups between the sheaves dictated by the dictionary above.
See [21] for more information.

3.3 Derived Categories

There is more to derived categories than just, sheaves. For example, where
does the structure of complexes come from? Not to mention, where does the
renormalization group enter?

First, in addition to D-branes, there are also anti-D-branes. An anti-D-
brane is specified by the same data as a D-brane, but dynamically a D-brane
and an anti-D-brane will try to annihilate one another.

Furthermore, in addition to antibranes, there are also “tachyons” between
branes and antibranes, represented by maps between the sheaves representing
the branes and antibranes.

The dictionary between derived categories and physics can now be stated.
Given a complex

· · · −→ E0 −→ E1 −→ E2 −→ · · ·

we map it to a brane/antibrane system in which the Ei for i odd, say, define
branes, the other sheaves define antibranes, and the maps are tachyons [15, 16].

The first problem with this dictionary is that we do not know how to
associate branes to every possible sheaf: we can map branes to sheaves but
not necessarily the reverse.

The solution to this problem is as follows. So long as we are on a smooth
complex manifold, every equivalence class of objects has a representative in
terms of a complex of locally free sheaves, i.e. a complex of bundles, and we
do know how to associate branes to those.

So, for any given equivalence class of objects, we pick a physically realizable
representative complex (at least one exists) and map it to branes/antibranes/
tachyons.

The next problem is that such representatives are not unique and different
representatives lead to different physics. For example, the sheaf 0, describing
no branes or antibranes, is equivalent in a derived category to the complex

0 −→ E =−→ E −→ 0

which is described by an unstable set of equivalent branes and antibranes.
However, although these two systems are physically distinct, we believe that



Derived Categories and Stacks in Physics 255

after a long time they will evolve to the same configuration – the branes
and antibranes will completely annihilate. Such time evolution corresponds to
worldsheet boundary renormalization group flow.

Thus, the proposal is that any two brane/antibrane systems representing
quasi-isomorphic complexes flow to the same physical theory under the renor-
malization group. In other words, the mathematics of derived categories is
providing a classification of universality classes of open strings.

A proposal of this form cannot be checked explicitly – it is not technically
possible to explicitly follow renormalization group flow. Thus, we must per-
form numerous indirect tests, to accumulate evidence to determine whether
the proposal is correct.

One test we can perform is to calculate massless spectra in the non-
conformal theory describing brane/antibrane/tachyon systems and check that,
again, one gets Ext groups. Let us work through those details.

On the worldsheet, to describe tachyons, we add a term to the boundary,
which has the effect of modifying the BRST operator, which becomes

QBRST = ∂ +
∑

i

φαβ
i

schematically. A necessary condition for the topological field theory to remain
well-defined is that Q2

BRST = 0, which implies that [23]

1. ∂φαβ = 0, i.e. the maps are holomorphic
2. φαβ

i φβγ
i+1 = 0, i.e. the composition of successive maps vanishes, the condi-

tion for a complex.

Furthermore, if f· : C· → D· is a chain homotopy between complexes, i.e. if

f = φDs − sφC

for sn : Cn → Dn−1, then f = QBRST s and so is BRST exact. So, modding
out BRST exact states will have the effect of modding out chain homotopies.

As an example, let us compute Extn
C(OD,O) in this language, for D a

divisor on the complex line C.

0 −→ O(−D)
φ−→ O −→ OD −→ 0

Relevant boundary states are of the form

bαβ
0ı1···ın

ηı1 · · · ηın ∼ Hn (O(−D)∨ ⊗ O)

bαβ
1ı1···ın

ηı1 · · · ηın ∼ Hn (O∨ ⊗ O)

In this language, degree one states are of the form b0 + b1ıη
ı. The BRST

closure conditions are
∂b0 = −φ(b1ıdz

ı

∂
(
b1ıdz

ı
)

= 0
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and the state is BRST exact if

b0 = φa

b1ıdz
ı = ∂a

for some a. These conditions imply that

b0 mod Im φ ∈ H0 (D,O(−D)∨|D ⊗ O|D) = Ext1(OD,O).

Conversely, given an element of

Ext1(OD,O) = H0 (D,O(−D)∨|D ⊗ OD)

we can define b0 and b1 using the long exact sequence

· · · −→ H0 (O) −→ H0 (O(D)) −→ H0 (D,O(D)|D) δ−→ H1(O) −→ · · ·

from which we see b1 is the image under δ and b0 is the lift to an element of
C∞(O(D)).

More generally, it can be shown that Ext groups can be obtained in this
fashion.

Thus, massless spectra can be counted in the non-conformal theory and
they match massless spectra of the corresponding conformal theory: both are
counted by Ext groups. This gives us a nice test of presentation-independence
of renormalization group flow, of the claim that localization on quasi-iso-
morphisms is realized by the renormalization group.

3.4 Grading

Let us next take a few minutes to describe how the grading appears physically
in terms of U(1)R charges.

For branes and antibranes wrapped on the entire space, the analysis is
straightforward. The tachyon T is a degree zero operator. The term we add
to the boundary to describe a tachyon is the descendant

∫

∂Σ

[G,T ]

where G is the topologically twisted boundary supercharge. The operator G
has U(1)R charge −1, so [G,T ] has charge −1. Now, a necessary condition to
preserve supersymmetry is that boundary terms must be neutral under U(1)R

(otherwise the U(1)R is broken, which breaks the N = 2 boundary supersym-
metry). Thus, the Noether charge associated to the U(1)R symmetry must
have boundary conditions on either side of the boundary-condition-changing
operator above such that the grading shifts by one.

For lower-dimensional sheaves, on the other hand, the relationship between
the U(1)R charge and the grading is more subtle. In particular, the state cor-
responding to an element of Extn(S, T ) for two sheaves S, T need not have
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U(1)R charge equal to n – the degree of the Ext group will not match the
charge of the state. If we build the states as combinations of fields acting on a
vacuum, then the U(1)R charge of the field combinations will be the same as
the degree of the Ext group, but the vacuum will make an additional contri-
bution to the U(1)R charge which will spoil the relationship. In particular, if
the two sheaves do not correspond to mutually supersymmetric branes, then
the charge of the vacuum need not even be integral. This mismatch is very un-
like closed strings, where typically the vacuum charge contribution precisely
insures that the total U(1)R charge does match the degree of corresponding
cohomology. This mismatch was known at the time of [15] and has been ver-
ified more thoroughly since (see e.g. [4]), though it is often misstated in the
literature.

3.5 Generalized Complexes

Another question the reader might ask is, why should maps between branes
and antibranes unravel into a linear complex as opposed to a more general set
of maps? For example, why can one not have a configuration that unravels to
something of the form

E0
�� E1

�� E2
���� E3

�� E4
�� E5

��

In fact, such configurations are allowed physically and also play an important
mathematical role.

Physically, if we add a boundary operator O of U(1)R charge n, then [G,O]
has charge n− 1, so the boundaries it lies between must have relative U(1)R

charge 1 − n and so give rise to the ‘wrong-way’ maps displayed above.
Adding such operators deforms the BRST operator

QBRST = ∂ +
∑

i

φαβ
i

and demanding that Q2
BRST = 0 now merely implies
∑

i

∂φi +
∑

i,j

φi ◦ φj = 0.

Complexes with wrong-way arrows of the form above, such that the maps
obey the condition stated above, are examples of “generalized complexes”
used in [24] to define a technical improvement of ordinary derived categories.
The relevance of [24] to physics was first described in [25, 26, 27].

3.6 Cardy Condition and Hirzebruch–Riemann–Roch

Other aspects of the physics of the open string B model have also been shown
to have a mathematical understanding. For example, the Cardy condition,
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which says that interpreting the annulus diagram in terms of either closed
or open string propagation, has been shown by A. Caldararu to be the same
mathematically as the Hirzebruch–Riemann–Roch index theorem:

∫

M

ch(E)∗ ∧ ch(F) ∧ td(TM) =
∑

i

(−)idim Exti
M (E ,F)

3.7 Open Problems

Lest the reader get the impression that the connection between derived cat-
egories and physics is well-understood, there are still some very basic open
problems that have never been solved. For example:

1. One of the most basic problems is that we have glossed over technical
issues in dealing with bundles of rank greater than one. For such bundles,
it is not completely understood how their curvature modifies the boundary
conditions on the open strings. Such boundary conditions will modify the
arguments we have given for tachyon vevs and although we are optimistic
that the modification will not make essential changes to the argument, no
one knows for certain.

2. Anomaly cancellation in the open string B model implies that one can
only have open strings between some D-branes and not others. At the
moment, we can only describe the condition in special circumstances, as
the (unknown) boundary conditions above play a crucial role. On the one
hand, this condition seems to violate the spirit of the arguments we have
presented so far and we would hope that some additional physical effect
(anomaly inflow, perhaps) modifies the conclusion. On the other hand,
this anomaly cancellation condition plays a role in understanding how
Ext groups arise.

3. We understand how to associate D-branes to some sheaves, but not to
other sheaves. A more comprehensive dictionary would be useful.

Although we now have most of the puzzle pieces, so to speak, a complete
comprehensive physical understanding still does not exist.

4 Stacks in Physics

4.1 Introduction

So far we have discussed the physical understanding of derived categories
as one application of the renormalization group: the mathematical process of
localization on quasi-isomorphisms is realized physically by worldsheet bound-
ary renormalization group flow.
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Another application is to the physical understanding of stacks,2 where the
renormalization group will play an analogous role in washing out potential
presentation-dependence.

Although in the mathematics literature the words “stack” and “orbifold”
are sometimes used interchangeably, in the physics community the term “orb-
ifold” has a much more restrictive meaning: global quotients by finite effec-
tively acting groups. Most stacks cannot be understood as global quotients by
finite effectively acting groups.

Understanding physical properties of string orbifolds has led physicists
through many ideas regarding orbifolds (in the sense used by physicists, global
quotients by finite effectively acting groups). For example, for a time, many
thought that the properties of orbifolds were somehow intrinsic to string the-
ory or CFT. Later, the fact that string orbifolds are well-behaved CFT’s unlike
sigma models on quotient spaces was attributed to a notion of “B fields at quo-
tient singularities” [28], a notion that only made sense in special cases. Later
still, because of the properties of D-branes in orbifolds [29], many claimed
that string orbifolds were the same as strings propagating on resolutions of
quotient spaces, a notion that can not make sense for terminal singularities
such as C4/Z2 or in some nonsupersymmetric orbifolds such as [C/Zk].

It was proposed in [30] that a better way of understanding the physical
properties of string orbifolds lie just in thinking of terms of the geometry of
stacks. For readers who are not well acquainted with the notion, the quotient
stack [X/G] encodes properties of orbifolds. For example, a function on the
stack [X/G] is a G-invariant function on X, a metric on the stack [X/G] is
a G-invariant metric on X, a bundle on the stack [X/G] is a G-equivariant
bundle on X and so forth. Roughly, the stack [X/G] is the same as the space
X/G except over the singularities of X/G, where the stack has additional
structure that results in it being smooth while X/G is singular. For G finite,
a map Y → [X/G] is a pair consisting of a principal G bundle P over Y
together with a G-equivariant map P → X. The reader should recognize this
as a twisted sector (defined by P ) together with a twisted map in that sector.
In other words, summing over maps into the stack [X/G], for G finite, is the
same as summing over the data in the path integral description of a string
orbifolds.

Part of the proposal of [30] was that the well-behavedness of string orbifold
CFT’s, as opposed to sigma models on quotient spaces, could be understood
geometrically as stemming from the smoothness of the corresponding stack.
In particular, the stack [X/G] is smooth even when the space X/G is singular
because of fixed-points of G. Another part of the proposal of [30] was a con-
jecture for how the “B fields at quotient singularities” could be understood
mathematically in terms of stacks, though that particular conjecture has since
been contradicted.

2 In this contribution by “stack” we mean Deligne–Mumford stacks and their
smooth analogues.
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However, at the time of [30], there were many unanswered questions. First
and foremost was a mismatch of moduli. One of the first tests of any proposed
mathematical model of part of physics is whether the physical moduli match
mathematical moduli – this was one of the reasons described for why sheaves
are believed to be a good model of D-branes, for example. Unfortunately,
physical moduli of string orbifolds are not the same as mathematical moduli
of stacks. For example, the stack [C2/Z2] is rigid, it has no moduli, whereas
physically the Z2 string orbifold of C2 does have moduli, which are understood
as deformations and resolutions of the quotient space C2/Z2. If string orbifolds
can be understood in terms of stacks, then it will be the first known case in
which mathematical moduli do not match physical moduli.

Understanding this moduli mismatch was the source of much work over
the next few years.

Another problem at the time of [30] was the issue of understanding how
to describe strings on more general stacks. Most stacks cannot be under-
stood as, global quotients by finite effectively acting groups and so cannot be
understood in terms of orbifolds in the sense used by physicists. One of the
motivations for thinking about stacks was to introduce a potentially new class
of string compactifications, so understanding strings on more general stacks
was of interest. At a more basic level, if the notion of strings on more general
stacks did not make sense, then that would call into question whether string
orbifolds can be understood meaningfully in terms of (special) stacks.

4.2 Strings on More General Stacks

How to understand strings on more general stacks? Although most stacks can
not be understood as global orbifolds by finite groups, locally in patches they
look like quotients by finite not-necessarily effectively acting groups. Unfor-
tunately, that does not help us physically: only3 global quotients are known
to define CFTs and only effectively acting quotients are well-understood.

So, we are back to the question of describing strings on more general
stacks. It is a mathematical result that most4 stacks can be presented as a
global quotient [X/G] for some group, not necessarily finite and not necessarily
effectively acting. To such a presentation, we can associate a G-gauged sigma
model.

3 Very recently some progress has been made understanding CFT’s perturbatively
in terms of local data on the target space [31], but the work described there is
only perturbative, not non-perturbative and does not suffice to define a CFT.

4 Experts are referred to an earlier footnote where we define our usage of ‘stack’. For
the exceptions to the rule described above, i.e. for those few stacks not presentable
in the form [X/G] for some not necessarily finite, not necessarily effectively acting
G, it is not currently known whether they define a CFT. Even if it is possible to
associate a CFT to them, it is certainly not known how one would associate a
CFT to them.
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So, given a presentation of the correct form, we can get a physical theory.
Unfortunately, such presentations are not unique and different presentations
lead to very different physics. For example, following the dictionary above,
[C2/Z2] defines a conformally invariant two-dimensional theory. However, that
stack can also be presented as [X/C×] where X = (C2 × C×)/Z2 and to
that presentation one associates a non-conformally invariant two-dimensional
theory, a U(1)-gauged sigma model. As stacks, they are the same,

[C2/Z2] = [X/C×]

but the corresponding physics is very different.
Thus, we have a potential presentation-dependence problem. These prob-

lems are, again, analogous to those in understanding the appearance of derived
categories in physics. There, to a given object in a derived category, one picks
a representative with a physical description (as branes/antibranes/tachyons),
just as here, given a stack, we must first pick a physically realizable presenta-
tion. Every equivalence class of objects has at least one physically realizable
representation; unfortunately, such representatives are not unique. It is con-
jectured that different representatives give rise to the same low-energy physics,
via boundary renormalization group flow, but only indirect tests are possible.

Here also, we conjecture that worldsheet renormalization group flow takes
different presentations of the same stack to the same CFT. Unfortunately,
just as in the case of derived categories, worldsheet renormalization group
flow cannot be followed explicitly and so we cannot explicitly check such a
claim. Instead, we must rely on indirect tests.

At the least, one would like to check that the spectrum of massless
states is presentation-independent. After all, in the case of derived categories,
this was one of the important checks we outlined that the renormalization
group respected localization on quasi-isomorphisms: spectra computed in non-
conformal presentations matched spectra computed in conformal presenta-
tions believed to be the endpoint of renormalization group flow.

Unfortunately, no such test is possible here. Massless spectra are only ex-
plicitly computable for global quotients by finite groups and have only been
well-understood in the past for global quotients by finite effectively acting
groups. For global quotients by non-finite groups, there has been a longstand-
ing unsolved technical question of how to compute massless spectra. Since
the theory is not conformal, the spectrum cannot be computed in the usual
fashion by enumerating vertex operators and although there exist conjectures
for how to find massive representations of some such states in special cases
(gauged linear sigma models), not even in such special cases does anyone have
conjectures for massive representations of all states, much less a systematic
computation method. The last (unsuccessful) attempt appearing in print was
in [32] and there has been little progress since then.

Thus, there is no way to tell if massless spectra are the same across pre-
sentations. On the other hand, a presentation-independent ansatz for massless
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spectra makes predictions for massless spectra in situations where they are
not explicitly computable.

As alluded to earlier, another of the first indirect tests of the presentation-
independence claim is whether deformations of stacks match deformations
of corresponding CFT’s. In every other known example of geometry applied
to physics, mathematical deformations match physical deformations. Unfor-
tunately, stacks fail this test, which one might worry might be a signal of
presentation-dependence. Maybe renormalization group flow does not respect
stacky equivalences of gauged sigma models; maybe some different mathemat-
ics is relevant instead of stacks.

To justify that stacks are relevant physically, as opposed to some other
mathematics, one has to understand this deformation theory issue, as well
as conduct tests for presentation-dependence. This was the subject of several
papers [33, 34, 35].

In the rest of these notes, we shall focus on special kinds of stacks known as
gerbes (which are described physically by quotients by non-effectively acting
groups).

4.3 Strings on Gerbes

Strings on gerbes, i.e. global quotients by non-effectively acting groups, have
additional physical difficulties beyond those mentioned in the last subsection.
For example, the naive massless spectrum calculation contains multiple di-
mension zero operators, which manifestly violates cluster decomposition, one
of the foundational axioms of quantum field theory.

There is a single known loophole: if the target space is disconnected, in
which case cluster decomposition is also violated, but in the mildest possible
fashion. We believe that is more or less what is going on.

Consider [X/H] where

1 −→ G −→ H −→ K −→ 1

G acts trivially, K acts effectively and neither H nor K need to be finite.
We claim [36]

CFT([X/H]) = CFT([(X × Ĝ)/K])

(together with some B field), where Ĝ is the set of irreducible representations
of G. We refer to this as our “decomposition conjecture”. The stack [(X ×
Ĝ)/K] is not connected and so the CFT violates cluster decomposition but
in the mildest possible fashion.

For banded gerbes, K acts trivially upon Ĝ, so the decomposition conjec-
ture reduces to

CFT (G− gerbe on X) = CFT

⎛

⎝
∐

Ĝ

(X,B)

⎞

⎠
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where the B field on each component is determined by the image of the
characteristic class of the gerbe under

H2(X,Z(G))
Z(G)→U(1)−→ H2(X,U(1)).

For our first example, consider [X/D4], where the Z2 centre of the dihedral
group D4 acts trivially:

1 −→ Z2 −→ D4 −→ Z2 × Z2 −→ 1

This example is banded and the decomposition conjecture above predicts

CFT([X/D4]) = CFT
(
[X/Z2 × Z2]

∐
[X/Z2 × Z2]

)

One of the effective Z2 ×Z2 orbifolds has vanishing discrete torsion, the other
has nonvanishing discrete torsion, using the relationship between discrete tor-
sion and B fields first described in [37, 38].

One easy check of that statement lies in computing genus one partition
functions. Denote the elements of the group D4 by

D4 = {1, z, a, b, az, bz, ab, ba = abz}

and the elements of Z2 × Z2 by

Z2 × Z2 = {1, a, b, ab}

and the map D4 → Z2 × Z2 proceeds as, for example, a, az 
→ a. The genus
one partition function of the noneffective D4 orbifold can be described as

Z(D4) =
1

|D4|
∑

g,h∈D4,gh=hg

Zg,h

Each of the Zg,h twisted sectors that appears is the same as a Z2 ×Z2 sector,
appearing with multiplicity |Z2|2 = 4 except for the

a

b

, a

ab

, b

ab

sectors, which have no lifts to the D4 orbifold. The partition function can be
expressed as

Z(D4) =
|Z2 × Z2|

|D4|
|Z2|2 (Z(Z2 × Z2) − (some twisted sectors))

= 2 (Z(Z2 × Z2) − (some twisted sectors))

The factor of 2 is important – in ordinary QFT, one ignores multiplicative
factors in partition functions, but string theory is a two-dimensional QFT
coupled to gravity and so such numerical factors are important.
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Discrete torsion acts as a sign on the

a

b

, a

ab

, b

ab

Z2 × Z2 twisted sectors, so adding partition functions with and without dis-
crete torsion will have the effect of removing the sectors above and multiplying
the rest by a factor of two. Thus, we see that

Z([X/D4]) = Z
(
[X/Z2 × Z2]

∐
[X/Z2 × Z2]

)

with discrete torsion in one component. (The same computation is performed
at arbitrary genus in [36].)

Another quick tests of this example comes from comparing massless spec-
tra. Using the Hodge decomposition, the massless spectrum for [T 6/D4] can
be expressed as

2
0 0

0 54 0
2 54 54 2

0 54 0
0 0

2

and the massless spectrum for each [T 6/Z2 × Z2], with and without discrete
torsion, can be written

1
0 0

0 3 0
1 51 51 1

0 3 0
0 0

1

and
1

0 0
0 51 0

1 3 3 1
0 51 0

0 0
1

The sum of the states from the two [T 6/Z2 × Z2] factors matches that of
[T 6/D4], precisely as expected.

Another example of the decomposition conjecture is given by [X/H], where
H is the eight-element group of quaternions and a Z4 acts trivially:
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1 −→< i > (∼= Z4) −→ H −→ Z2 −→ 1

The decomposition conjecture predicts

CFT([X/H]) = CFT
(
[X/Z2]

∐
[X/Z2]

∐
X
)
.

It is straightforward to show that this statement is true at the level of partition
functions, as before.

Another class of examples involves global quotients by non-effectively-
acting non-finite groups. For example, the banded Zk gerbe over PN−1 with
characteristic class −1 mod k can be described mathematically as the quotient

[
CN − {0}

C×

]

where the C× acts as rotations by k times rather than once. Physically this
quotient can be described by a U(1) supersymmetric gauge theory with N
chiral fields all of charge k, rather than charge 1. The only difference between
this and the ordinary supersymmetric PN−1 model is that the charges are
non-minimal.

Now, how can this be physically distinct from the ordinary supersymmet-
ric PN−1 model? After all, perturbatively having non-minimal charges makes
no difference. The difference lies in non-perturbative effects. For example, con-
sider the anomalous global U(1) symmetries of these models. In the ordinary
supersymmetric PN−1 model, the axial U(1) is broken to Z2N by anomalies,
whereas here it is broken to Z2kN . The non-vanishing A model correlation
functions of the ordinary supersymmetric PN−1 model are given by

< XN(d+1)−1 > = qd

whereas here the non-zero A model correlation functions are given by

< XN(kd+1)−1 > = qd

As a result, the quantum cohomology ring of the ordinary PN−1 model is
given by

C[x]/(xN − q)

whereas the quantum cohomology ring of the current model is given by

C[x]/(xkN − q)

In short, having non-minimal charges does lead to different physics.
Why should having non-minimal charges make a difference non-perturba-

tively? On a compact worldsheet, this can be understood as follows. To specify
a Higgs field completely on a compact space, we need to specify what bundle
they couple to. Thus, if the gauge field couples to L then saying a Higgs
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field Φ has charge Q implies Φ ∈ Γ (L⊗Q). Different bundles implies fields
have different zero modes, which implies different anomalies, which implies
different physics.

On a non-compact worldsheet, the argument is different [39]. If electrons
have charge k, then instantons have charge 1/k and the theory reduces to the
minimal-charge case. Suppose we add massive fields of charge ±1, of mass
greater than the energy scale at which we are working. One can determine
instanton numbers by periodicity of the theta angle, which acts like an electric
field in two dimensions. If all fields have charge k, then the theta angle has
periodicity 2πk and we reduce to the ordinary case. However, the existence of
massive fields of unit charge means the theta angle has periodicity 2π, which
is the new case. Thus, even on a non-compact worldsheet, having non-minimal
charges can be distinguished from minimal charges.

There are four-dimensional analogues of this distinction. For example,
SU(n) and SU(n)/Zn gauge theories are perturbatively equivalent (since
their Lie algebras are identical), but have distinct nonperturbative correc-
tions, a fact that is crucial to the analysis of [40]. Similarly, Spin(n) and
SO(n) gauge theories are perturbatively identical but non-perturbatively dis-
tinct. M. Strassler has studied Seiberg duality in this context [41] and has ex-
amples of Spin(n) gauge theories with Z2 monopoles (distinguishing Spin(n)
from SO(n) non-perturbatively) Seiberg dual to Spin(n) gauge theory with
massive spinors (distinguishing Spin(n) from SO(n) perturbatively).

The equivalence of CFT’s implied by our decomposition conjecture implies
a statement about K theory, thanks to D-branes. Suppose H acts on X with
a trivially acting subgroup G:

1 −→ G −→ H −→ K −→ 1

Our decomposition conjecture predicts that the ordinary H-equivariant K
theory of X is the same as the twisted K-equivariant K theory of X× Ĝ. This
result can be derived just within K theory (see [36]) and provides a check of
the decomposition conjecture.

Another check of the decomposition conjecture comes from derived cate-
gories. Our decomposition conjecture predicts that D-branes on a gerbe should
be the same as D-branes on a disjoint union of spaces, together with flat B
fields, and this corresponds to a known mathematics result. Specifically, a
sheaf on a gerbe is the same as a twisted sheaf on [X × Ĝ/K]. A sheaf on a
banded G-gerbe is the same thing as a twisted sheaf on the underlying space,
twisted by the image of the characteristic class of the gerbe in H2(X,Z(G)).
Thus, sheaves on gerbes behave in exactly the fashion one would expect from
D-branes according to our decomposition conjecture.

Similarly, massless states between D-branes also have an analogous de-
composition. For D-branes on a disjoint union of spaces, there will only be
massless states between D-branes which are both on the same connected com-
ponent. Mathematically, in the banded case for example, sheaves on a banded
G-gerbe decompose according to irreducible representations of G and sheaves
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associated with distinct irreducible representations have vanishing Ext groups
between them. This is precisely consistent with the idea that sheaves associ-
ated with distinct irreducible representations should describe D-branes on
different components of a disconnected space.

4.4 Mirror Symmetry for Stacks

There exist mirror constructions for any model realizable as a two-dimensional
abelian gauge theory [42, 43]. There is a notion of toric stacks [44], gener-
alizing toric varieties, which can be described physically via gauged linear
sigma models [35]. Standard mirror constructions [42, 43] now produce [35]
character-valued fields, a new effect, which ties into the stacky fan description
of [44].

For example, the “Toda dual” of the supersymmetric PN model is de-
scribed by Landau–Ginzburg model with superpotential

W = exp(−Y1) + · · · + exp(−YN ) + exp(Y1 + · · · + YN )

The analogous duals to Zk gerbes over PN , of characteristic class −n mod k,
are given by [35]

W = exp(−Y1) + · · · + exp(−YN ) + Υn exp(Y1 + · · · + YN )

where Υ is a character-valued field, in this case valued in the characters of Zk.
In the same language, the Landau-Ginzburg point mirror to the quintic

hypersurface in a Zk gerbe over P4 is described by (an orbifold of) the super-
potential

W = x5
0 + · · · + x5

4 + ψΥx0x1x2x3x4

where ψ is the ordinary complex structure parameter (mirror to the Kähler
parameter) and Υ is a discrete (character-)valued field as above.

In terms of the path integral measure,
∫

[Dxi, Υ ] =
∫

[Dxi]
∑

Υ

=
∑

Υ

∫

[Dxi]

so having a discrete-valued field is equivalent to summing over contributions
from different theories, or, equivalently, summing over different components
of the target space.

In the case of the gerby quintic, the presence of the discrete-valued field Υ
on the mirror means that the CFT is describing a target space with multiple
components. Moreover, the mirror map for the ordinary quintic says

B + iJ = − 5
2πi

log(5ψ) + · · ·

so shifting ψ by phases has precisely5 the effect of shifting the B field, exactly
as the decomposition conjecture predicts for this case.
5 Higher order corrections invalidate geometric conclusions, so we are omitting

them.
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4.5 Applications

One of the original proposed applications of these ideas, described in [30],
was to understand physical properties of string orbifolds. For example, the
fact that string orbifolds define well-behaved CFTs, unlike sigma models on
quotient spaces, might be attributable to the smoothness of the corresponding
quotient stack, instead of traditional notions such as “B fields at quotient
singularities” or “string orbifolds are strings on resolutions”, which do not
even make sense in general.

Another basic application is to give a concrete understanding of local orb-
ifolds, i.e. stacks which are locally quotients by finite groups but which cannot
be expressed globally as quotients by finite groups. We now have a concrete
way to manufacture a corresponding CFT – by rewriting the local orbifold
as a global quotient by a non-finite group – and we also understand what
problems may arise – the construction might not be well-defined, as different
rewritings might conceivably flow under the renormalization group to distinct
CFTs.

Implicit here is that stacks give a classification of universality classes of
worldsheet renormalization group flow in gauged sigma models, just as derived
categories give a classification of universality classes of worldsheet boundary
renormalization group flow in the open string B model.

Another application is the computation of massless spectra in cases
where direct calculations are not currently possible, such as global quo-
tients by nonfinite groups. A presentation-independent ansatz was described
in [30, 33, 34, 35] which predicts massless spectra in cases where explicitly
enumerating vertex operators is not possible.

Another application of these ideas is to the properties of quotients by
noneffective group actions, i.e. group actions in which elements other than
the identity act trivially. Such quotients correspond to strings propagating on
special kinds of stacks known as gerbes.

Non-effective group actions play a crucial role in [40], the recent work on
the physical interpretation of the geometric Langlands program. One applica-
tion of the decomposition conjecture of the last section is to give a concrete
understanding of some aspects of [40]. For example, related work [45] describes
two-dimensional theories in the language of gerbes, whereas [40] deals exclu-
sively with spaces. As a result of the decomposition conjecture, we see that
the language of [45] is physically equivalent to that of [40], as sigma models
on the gerbes of [45] define the same CFTs as sigma models on the disjoint
unions of spaces of [40].

Our decomposition conjecture makes a prediction for Gromov–Witten in-
variants of gerbes, as defined in the mathematics literature in, for example,
[46]. Specifically, the Gromov–Witten theory of [X/H] should match that of
[(X × Ĝ)/K]. This prediction works in basic cases [47].

Another result of our work is quantum cohomology for toric stacks. Toric
stacks are a stacky generalization of toric varieties [44]. Just as toric varieties
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can be described with gauged linear sigma models, so too can toric stacks [35],
and so the technology of gauged linear sigma models can be applied to their
understanding. In particular, Batyrev’s conjecture for quantum cohomology
rings can be extracted from the two-dimensional effective action of the gauge
theory, without any explicit mention of rational curves [48].

In the present case, old results of [48] generalize from toric varieties to
toric stacks. Let the toric stack be described in the form

[
CN − E

(C×)n

]

where E is some exceptional set, Qa
i the weight of the ith vector under the ath

C×, then the analogue of Batyrev’s conjecture for the quantum cohomology
ring is of the form C[σ1, · · · , σn] modulo the relations [35]

N∏

i=1

(
n∑

b=1

Qb
iσb

)Qa
i

= qa.

For example, the quantum cohomology ring of PN is

C[x]/(xN+1 − q)

and according to the formula above the quantum cohomology ring of a Zk

gerbe over PN with characteristic class −n mod k is

C[x, y]/(yk − q2, xN+1 − ynq1).

As an aside, note the calculations above give us a check of the massless spec-
trum. In physics, we can derive quantum cohomology rings without knowing
the massless spectrum and we are unable to calculate the massless spectrum
directly for the gerbes above, hence we can use the quantum cohomology rings
to read off the additive part of the massless spectrum.

Also note that we can see the decomposition conjecture for gerbes in the
quantum cohomology rings of toric stacks. Consider for example, the quantum
cohomology ring of a Zk gerbe on PN , as above. In that ring, the y’s index
copies of the quantum cohomology ring of PN with variable q’s. The gerbe is
banded, so this is exactly what we expect – copies of PN , variable B field.

More generally, a gerbe structure is indicated from the quotient descrip-
tion whenever the C× charges are non-minimal. In such a case, from our
generalization of Batyrev’s conjecture, at least one relation will have the form
pk = q, where p is a relation in the quantun cohomology ring of the toric va-
riety and k is the greatest divisor in the non-minimal charges. We can rewrite
that relation in the same form as for a gerbe on PN and in this fashion can
see our decomposition conjecture in our generalization of Batyrev’s quantum
cohomology.

Other applications of stacks to understanding D-branes and their derived
categories model are discussed in [49, 50, 51].
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5 Conclusions

In this contribution we have outlined how both derived categories and stacks
enter physics, and the crucial role of the renormalization group. In both
the cases, to physically realize either a derived category or stack, one picks
physically-realizable presentations (which are guaranteed to exist, though
not all presentations are physically realizable), which yield non-conformal
theories. Remaining presentation-dependence is removed via renormalization
group flow.

Acknowledgements

I have learned a great deal of both mathematics and physics from my col-
laborators on the papers we have written concerning derived categories and
stacks. Listed alphabetically, they are M. Ando, A. Caldararu, R. Donagi,
S. Hellerman, A. Henriques, S. Katz and T. Pantev.

References

1. C. Weibel, An Introduction to Homological Algebra, Cambridge studies in ad-
vanced mathematics 38, Cambridge University Press, 1994. 250

2. R. Hartshorne, Residues and Duality, Lecture Notes in Mathematics 20,
Springer-Verlag, Berlin, 1966. 250

3. R. Thomas, “Derived categories for the working mathematician,”
math.AG/0001045. 250

4. E. Sharpe, “Lectures on D-branes and sheaves,” lectures given at the twelfth
Oporto meeting on “Geometry, topology, and physics,” hep-th/0307245. 250, 257

5. A. Vistoli, “Intersection theory on algebraic stacks and on their moduli spaces,”
Inv. Math. 97 (1989) 613–670. 250

6. T. Gomez, “Algebraic stacks,” Proc. Indian Acad. Sci. Math. Sci. 111 (2001)
1–31, math.AG/9911199. 250

7. M. Kontsevich, “Homological algebra of mirror symmetry,” in Proceedings
of the International Congress of Mathematicians, pp. 120–139, Birkhäuser,
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